Changes in the Saliva Proteome of Pigs with Diarrhoea Caused by Escherichia coli.

IF 4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Miguel Rodrigues, Maria José López-Martinez, Alba Ortin-Bustillo, Jose Joaquin Cerón, Silvia Martinez-Subiela, Alberto Muñoz-Prieto, Elsa Lamy
{"title":"Changes in the Saliva Proteome of Pigs with Diarrhoea Caused by <i>Escherichia coli</i>.","authors":"Miguel Rodrigues,&nbsp;Maria José López-Martinez,&nbsp;Alba Ortin-Bustillo,&nbsp;Jose Joaquin Cerón,&nbsp;Silvia Martinez-Subiela,&nbsp;Alberto Muñoz-Prieto,&nbsp;Elsa Lamy","doi":"10.3390/proteomes11020014","DOIUrl":null,"url":null,"abstract":"<p><p><i>Escherichia coli</i> represents the main cause of diarrhoea in pigs. Saliva can provide information about the pathophysiology of diseases and be a source of biomarkers. We aimed to identify changes in the salivary proteome of pigs with diarrhoea caused by <i>E. coli</i>. Saliva samples were collected from 10 pigs with this disease and 10 matched healthy controls. SDS-PAGE (1DE) and two-dimensional gel electrophoresis (2DE) were performed, and significantly different protein bands and spots were identified by mass spectrometry. For validation, adenosine deaminase (ADA) was measured in 28 healthy and 28 diseased pigs. In 1DE, increases in lipocalin and IgA bands were observed for diseased pigs, whereas bands containing proteins such as odorant-binding protein and/or prolactin-inducible protein presented decreased concentrations. Two-dimensional gel electrophoresis (2DE) results showed that saliva from <i>E. coli</i> animals presented higher expression levels of lipocalin, ADA, IgA and albumin peptides, being ADA activity increased in the diseased pigs in the validation study. Spots containing alpha-amylase, carbonic anhydrase VI, and whole albumin were decreased in diseased animals. Overall, pigs with diarrhoea caused by <i>E. coli</i> have changes in proteins in their saliva related to various pathophysiological mechanisms such as inflammation and immune function and could potentially be biomarkers of this disease.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"11 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123737/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes11020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Escherichia coli represents the main cause of diarrhoea in pigs. Saliva can provide information about the pathophysiology of diseases and be a source of biomarkers. We aimed to identify changes in the salivary proteome of pigs with diarrhoea caused by E. coli. Saliva samples were collected from 10 pigs with this disease and 10 matched healthy controls. SDS-PAGE (1DE) and two-dimensional gel electrophoresis (2DE) were performed, and significantly different protein bands and spots were identified by mass spectrometry. For validation, adenosine deaminase (ADA) was measured in 28 healthy and 28 diseased pigs. In 1DE, increases in lipocalin and IgA bands were observed for diseased pigs, whereas bands containing proteins such as odorant-binding protein and/or prolactin-inducible protein presented decreased concentrations. Two-dimensional gel electrophoresis (2DE) results showed that saliva from E. coli animals presented higher expression levels of lipocalin, ADA, IgA and albumin peptides, being ADA activity increased in the diseased pigs in the validation study. Spots containing alpha-amylase, carbonic anhydrase VI, and whole albumin were decreased in diseased animals. Overall, pigs with diarrhoea caused by E. coli have changes in proteins in their saliva related to various pathophysiological mechanisms such as inflammation and immune function and could potentially be biomarkers of this disease.

Abstract Image

Abstract Image

Abstract Image

大肠杆菌腹泻猪唾液蛋白质组的变化
大肠杆菌是猪腹泻的主要原因。唾液可以提供疾病的病理生理信息,是生物标志物的来源。我们的目的是确定由大肠杆菌引起的腹泻猪唾液蛋白质组的变化。收集了10头患此病的猪和10头匹配的健康对照的唾液样本。SDS-PAGE (1DE)和二维凝胶电泳(2DE),质谱分析鉴定出明显不同的蛋白条带和斑点。为了验证,测定了28头健康猪和28头病猪的腺苷脱氨酶(ADA)。在1DE中,观察到病猪的脂钙蛋白和IgA条带增加,而含有气味结合蛋白和/或催乳素诱导蛋白的条带浓度降低。二维凝胶电泳(2DE)结果显示,大肠杆菌动物唾液中脂钙蛋白、ADA、IgA和白蛋白肽的表达水平较高,验证研究中患病猪的ADA活性升高。患病动物体内含有α -淀粉酶、碳酸酐酶VI和全白蛋白的斑点减少。总体而言,由大肠杆菌引起腹泻的猪唾液中蛋白质的变化与各种病理生理机制(如炎症和免疫功能)有关,并且可能成为该疾病的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteomes
Proteomes Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍: Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信