Zakary M Beach, Ashley K Fung, Stephanie N Weiss, Louis J Soslowsky
{"title":"Post-injury tendon mechanics are not affected by tamoxifen treatment.","authors":"Zakary M Beach, Ashley K Fung, Stephanie N Weiss, Louis J Soslowsky","doi":"10.1080/03008207.2022.2097907","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A growing interest in the mechanisms that govern tendon healing has resulted in the develop-ment of tools, such as the tamoxifen-inducible mouse knockdown model, to address these questions. However, tamoxifen is a selective estrogen receptor modulator and may interfere with the tendon healing process. The objective of this study was to evaluate the effects of tamoxifen on post-injury tendon mechanics in wild-type mice.</p><p><strong>Methods: </strong>The mice underwent treatment at the time of injury using an established mouse injury model and the injured tendons were evaluated 3 weeks post-injury. The treatment contained tamoxifen suspended in corn oil and was compared to a treatment with only corn oil, as well as mice with no treatment. Tendons were evaluated by measuring the quasi-static and viscoelastic mechanics, collagen fiber realignment, cellularity, and nuclear morphology.</p><p><strong>Results: </strong>Mechanical testing of the tendons post-injury revealed no changes to viscoelastic mechanics, quasi-static mechanics, or collagen realignment during loading after tamoxifen treatment with the dosage regimen utilized (three daily injections of 4.5 mg/40 g body weight). Additionally, histological analysis revealed no changes to cellularity or cell nuclear shape.</p><p><strong>Conclusion: </strong>Overall, this study revealed that tamoxifen treatment at the time of tendon injury did not result in changes to tendon mechanics or the histological parameters at 3 weeks post-injury.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 1","pages":"75-81"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832173/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2022.2097907","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose: A growing interest in the mechanisms that govern tendon healing has resulted in the develop-ment of tools, such as the tamoxifen-inducible mouse knockdown model, to address these questions. However, tamoxifen is a selective estrogen receptor modulator and may interfere with the tendon healing process. The objective of this study was to evaluate the effects of tamoxifen on post-injury tendon mechanics in wild-type mice.
Methods: The mice underwent treatment at the time of injury using an established mouse injury model and the injured tendons were evaluated 3 weeks post-injury. The treatment contained tamoxifen suspended in corn oil and was compared to a treatment with only corn oil, as well as mice with no treatment. Tendons were evaluated by measuring the quasi-static and viscoelastic mechanics, collagen fiber realignment, cellularity, and nuclear morphology.
Results: Mechanical testing of the tendons post-injury revealed no changes to viscoelastic mechanics, quasi-static mechanics, or collagen realignment during loading after tamoxifen treatment with the dosage regimen utilized (three daily injections of 4.5 mg/40 g body weight). Additionally, histological analysis revealed no changes to cellularity or cell nuclear shape.
Conclusion: Overall, this study revealed that tamoxifen treatment at the time of tendon injury did not result in changes to tendon mechanics or the histological parameters at 3 weeks post-injury.
期刊介绍:
The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology.
The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented.
The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including
Biochemistry
Cell and Molecular Biology
Immunology
Structural Biology
Biophysics
Biomechanics
Regenerative Medicine
The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.