Chen Sheng, Lin Wang, Zhenhuan Huang, Tian Wang, Yalin Guo, Wenjie Hou, Laiqing Xu, Jiazhu Wang, Xue Yan
{"title":"Transformer-Based Deep Learning Network for Tooth Segmentation on Panoramic Radiographs.","authors":"Chen Sheng, Lin Wang, Zhenhuan Huang, Tian Wang, Yalin Guo, Wenjie Hou, Laiqing Xu, Jiazhu Wang, Xue Yan","doi":"10.1007/s11424-022-2057-9","DOIUrl":null,"url":null,"abstract":"<p><p>Panoramic radiographs can assist dentist to quickly evaluate patients' overall oral health status. The accurate detection and localization of tooth tissue on panoramic radiographs is the first step to identify pathology, and also plays a key role in an automatic diagnosis system. However, the evaluation of panoramic radiographs depends on the clinical experience and knowledge of dentist, while the interpretation of panoramic radiographs might lead misdiagnosis. Therefore, it is of great significance to use artificial intelligence to segment teeth on panoramic radiographs. In this study, SWin-Unet, the transformer-based Ushaped encoder-decoder architecture with skip-connections, is introduced to perform panoramic radiograph segmentation. To well evaluate the tooth segmentation performance of SWin-Unet, the PLAGH-BH dataset is introduced for the research purpose. The performance is evaluated by F1 score, mean intersection and Union (IoU) and Acc, Compared with U-Net, Link-Net and FPN baselines, SWin-Unet performs much better in PLAGH-BH tooth segmentation dataset. These results indicate that SWin-Unet is more feasible on panoramic radiograph segmentation, and is valuable for the potential clinical application.</p>","PeriodicalId":50026,"journal":{"name":"Journal of Systems Science & Complexity","volume":" ","pages":"257-272"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science & Complexity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11424-022-2057-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Panoramic radiographs can assist dentist to quickly evaluate patients' overall oral health status. The accurate detection and localization of tooth tissue on panoramic radiographs is the first step to identify pathology, and also plays a key role in an automatic diagnosis system. However, the evaluation of panoramic radiographs depends on the clinical experience and knowledge of dentist, while the interpretation of panoramic radiographs might lead misdiagnosis. Therefore, it is of great significance to use artificial intelligence to segment teeth on panoramic radiographs. In this study, SWin-Unet, the transformer-based Ushaped encoder-decoder architecture with skip-connections, is introduced to perform panoramic radiograph segmentation. To well evaluate the tooth segmentation performance of SWin-Unet, the PLAGH-BH dataset is introduced for the research purpose. The performance is evaluated by F1 score, mean intersection and Union (IoU) and Acc, Compared with U-Net, Link-Net and FPN baselines, SWin-Unet performs much better in PLAGH-BH tooth segmentation dataset. These results indicate that SWin-Unet is more feasible on panoramic radiograph segmentation, and is valuable for the potential clinical application.
期刊介绍:
The Journal of Systems Science and Complexity is dedicated to publishing high quality papers on mathematical theories, methodologies, and applications of systems science and complexity science. It encourages fundamental research into complex systems and complexity and fosters cross-disciplinary approaches to elucidate the common mathematical methods that arise in natural, artificial, and social systems. Topics covered are:
complex systems,
systems control,
operations research for complex systems,
economic and financial systems analysis,
statistics and data science,
computer mathematics,
systems security, coding theory and crypto-systems,
other topics related to systems science.