{"title":"Implantable biosensors for musculoskeletal health.","authors":"Kylie E Nash, Keat Ghee Ong, Robert E Guldberg","doi":"10.1080/03008207.2022.2041002","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A healthy musculoskeletal system requires complex functional integration of bone, muscle, cartilage, and connective tissues responsible for bodily support, motion, and the protection of vital organs. Conditions or injuries to musculoskeeltal tissues can devastate an individual's quality of life. Some conditions that are particularly disabling include severe bone and muscle injuries to the extremities and amputations resulting from unmanageable musculoskeletal conditions or injuries. Monitoring and managing musculoskeletal health is intricate because of the complex mechanobiology of these interconnected tissues.</p><p><strong>Methods: </strong>For this article, we reviewed literature on implantable biosensors related to clinical data of the musculoskeletal system, therapeutics for complex bone injuries, and osseointegrated prosthetics as example applications.</p><p><strong>Results: </strong>As a result, a brief summary of biosensors technologies is provided along with review of noteworthy biosensors and future developments needed to fully realize the translational benefit of biosensors for musculoskeletal health.</p><p><strong>Conclusions: </strong>Novel implantable biosensors capable of tracking biophysical parameters in vivo are highly relevant to musculoskeletal health because of their ability to collect clinical data relevant to medical decisions, complex trauma treatment, and the performance of osseointegrated prostheses.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 3","pages":"228-242"},"PeriodicalIF":2.8000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977250/pdf/nihms-1780342.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2022.2041002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose: A healthy musculoskeletal system requires complex functional integration of bone, muscle, cartilage, and connective tissues responsible for bodily support, motion, and the protection of vital organs. Conditions or injuries to musculoskeeltal tissues can devastate an individual's quality of life. Some conditions that are particularly disabling include severe bone and muscle injuries to the extremities and amputations resulting from unmanageable musculoskeletal conditions or injuries. Monitoring and managing musculoskeletal health is intricate because of the complex mechanobiology of these interconnected tissues.
Methods: For this article, we reviewed literature on implantable biosensors related to clinical data of the musculoskeletal system, therapeutics for complex bone injuries, and osseointegrated prosthetics as example applications.
Results: As a result, a brief summary of biosensors technologies is provided along with review of noteworthy biosensors and future developments needed to fully realize the translational benefit of biosensors for musculoskeletal health.
Conclusions: Novel implantable biosensors capable of tracking biophysical parameters in vivo are highly relevant to musculoskeletal health because of their ability to collect clinical data relevant to medical decisions, complex trauma treatment, and the performance of osseointegrated prostheses.
期刊介绍:
The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology.
The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented.
The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including
Biochemistry
Cell and Molecular Biology
Immunology
Structural Biology
Biophysics
Biomechanics
Regenerative Medicine
The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.