{"title":"Evaluation of the magnetic field requirements for nanomagnetic gene transfection.","authors":"A Fouriki, N Farrow, M A Clements, J Dobson","doi":"10.3402/nano.v1i0.5167","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong>The objective of this work was to examine the effects of magnet distance (and by proxy, field strength) on nanomagnetic transfection efficiency.</p><p><strong>Methods: </strong>non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays.</p><p><strong>Results: </strong>Fluorescence intensity (firefly luciferase) of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically.</p><p><strong>Conclusion: </strong>In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™.</p>","PeriodicalId":74237,"journal":{"name":"Nano reviews","volume":"1 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3402/nano.v1i0.5167","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3402/nano.v1i0.5167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
Unlabelled: The objective of this work was to examine the effects of magnet distance (and by proxy, field strength) on nanomagnetic transfection efficiency.
Methods: non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays.
Results: Fluorescence intensity (firefly luciferase) of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically.
Conclusion: In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™.