{"title":"COVID-19 Epidemic Forecast in Brazil.","authors":"Oleg Gaidai, Yihan Xing","doi":"10.1177/11779322231161939","DOIUrl":null,"url":null,"abstract":"<p><p>This study advocates a novel spatio-temporal method for accurate prediction of COVID-19 epidemic occurrence probability at any time in any Brazil state of interest, and raw clinical observational data have been used. This article describes a novel bio-system reliability approach, particularly suitable for multi-regional environmental and health systems, observed over a sufficient time period, resulting in robust long-term forecast of the virus outbreak probability. COVID-19 daily numbers of recorded patients in all affected Brazil states were taken into account. This work aimed to benchmark novel state-of-the-art methods, making it possible to analyse dynamically observed patient numbers while taking into account relevant regional mapping. Advocated approach may help to monitor and predict possible future epidemic outbreaks within a large variety of multi-regional biological systems. Suggested methodology may be used in various modern public health applications, efficiently using their clinical survey data.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c3/9b/10.1177_11779322231161939.PMC10090958.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322231161939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study advocates a novel spatio-temporal method for accurate prediction of COVID-19 epidemic occurrence probability at any time in any Brazil state of interest, and raw clinical observational data have been used. This article describes a novel bio-system reliability approach, particularly suitable for multi-regional environmental and health systems, observed over a sufficient time period, resulting in robust long-term forecast of the virus outbreak probability. COVID-19 daily numbers of recorded patients in all affected Brazil states were taken into account. This work aimed to benchmark novel state-of-the-art methods, making it possible to analyse dynamically observed patient numbers while taking into account relevant regional mapping. Advocated approach may help to monitor and predict possible future epidemic outbreaks within a large variety of multi-regional biological systems. Suggested methodology may be used in various modern public health applications, efficiently using their clinical survey data.
期刊介绍:
Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.