Research Progress on the Effect of Autophagy and Exosomes on Liver Fibrosis.

IF 2.1 4区 医学 Q4 CELL & TISSUE ENGINEERING
Yikuan Du, Silin Zhu, Haojie Zeng, Zhenjie Wang, Yixing Huang, Yuqi Zhou, Weichui Zhang, Jinfeng Zhu, Chun Yang
{"title":"Research Progress on the Effect of Autophagy and Exosomes on Liver Fibrosis.","authors":"Yikuan Du, Silin Zhu, Haojie Zeng, Zhenjie Wang, Yixing Huang, Yuqi Zhou, Weichui Zhang, Jinfeng Zhu, Chun Yang","doi":"10.2174/1574888X18666230427112930","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic liver disease is a known risk factor for the development of liver cancer, and the development of microRNA (miRNA) liver therapies has been hampered by the difficulty of delivering miRNA to damaged tissues. In recent years, numerous studies have shown that hepatic stellate cell (HSC) autophagy and exosomes play an important role in maintaining liver homeostasis and ameliorating liver fibrosis. In addition, the interaction between HSC autophagy and exosomes also affects the progression of liver fibrosis. In this paper, we review the research progress of mesenchymal stem cell-derived exosomes (MSC-EVs) loaded with specific miRNA and autophagy, and their related signaling pathways in liver fibrosis, which will provide a more reliable basis for the use of MSC-EVs for therapeutic delivery of miRNAs targeting the chronic liver disease.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"785-797"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574888X18666230427112930","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic liver disease is a known risk factor for the development of liver cancer, and the development of microRNA (miRNA) liver therapies has been hampered by the difficulty of delivering miRNA to damaged tissues. In recent years, numerous studies have shown that hepatic stellate cell (HSC) autophagy and exosomes play an important role in maintaining liver homeostasis and ameliorating liver fibrosis. In addition, the interaction between HSC autophagy and exosomes also affects the progression of liver fibrosis. In this paper, we review the research progress of mesenchymal stem cell-derived exosomes (MSC-EVs) loaded with specific miRNA and autophagy, and their related signaling pathways in liver fibrosis, which will provide a more reliable basis for the use of MSC-EVs for therapeutic delivery of miRNAs targeting the chronic liver disease.

自噬和外泌体对肝纤维化影响的研究进展。
慢性肝病是肝癌发病的一个已知风险因素,而microRNA(miRNA)肝脏疗法的开发一直受阻于向受损组织输送miRNA的困难。近年来,大量研究表明,肝星状细胞(HSC)自噬和外泌体在维持肝脏稳态和改善肝纤维化方面发挥着重要作用。此外,造血干细胞自噬与外泌体之间的相互作用也会影响肝纤维化的进展。本文综述了间充质干细胞衍生外泌体(MSC-EVs)负载特定miRNA和自噬的研究进展,以及它们在肝纤维化中的相关信号通路,这将为利用间充质干细胞衍生外泌体靶向慢性肝病治疗递送miRNA提供更可靠的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current stem cell research & therapy
Current stem cell research & therapy CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
4.20
自引率
3.70%
发文量
197
审稿时长
>12 weeks
期刊介绍: Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信