Genetic Manipulation of Mycoplasma pneumoniae.

Q4 Biochemistry, Genetics and Molecular Biology
Tsuyoshi Kenri
{"title":"Genetic Manipulation of Mycoplasma pneumoniae.","authors":"Tsuyoshi Kenri","doi":"10.1007/978-1-0716-3060-0_29","DOIUrl":null,"url":null,"abstract":"<p><p>Mycoplasma pneumoniae is a small cell wall-lacking bacterium that is a common cause of bronchitis and pneumonia in humans. In addition to its clinical importance, M. pneumoniae has recently been considered a promising model organism for synthetic biology because of its small genome size and unique cell structure. At one cell pole, M. pneumoniae forms the attachment organelle that is responsible for adherence to host cells and gliding motility. The attachment organelle is a membrane protrusion and is composed of number of molecules, including adhesin and cytoskeletal proteins. Genetic manipulation techniques are key research approaches for understanding the structure and the function of this unique molecular machinery. In this chapter, standard genetic engineering methods for this species using the Tn4001 transposon vector are described.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2646 ","pages":"347-357"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3060-0_29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Mycoplasma pneumoniae is a small cell wall-lacking bacterium that is a common cause of bronchitis and pneumonia in humans. In addition to its clinical importance, M. pneumoniae has recently been considered a promising model organism for synthetic biology because of its small genome size and unique cell structure. At one cell pole, M. pneumoniae forms the attachment organelle that is responsible for adherence to host cells and gliding motility. The attachment organelle is a membrane protrusion and is composed of number of molecules, including adhesin and cytoskeletal proteins. Genetic manipulation techniques are key research approaches for understanding the structure and the function of this unique molecular machinery. In this chapter, standard genetic engineering methods for this species using the Tn4001 transposon vector are described.

肺炎支原体的遗传操作。
肺炎支原体是一种缺乏细胞壁的小细菌,是人类支气管炎和肺炎的常见病因。除了临床重要性外,肺炎支原体由于其小的基因组大小和独特的细胞结构,最近被认为是一种有前途的合成生物学模式生物。在一个细胞极,肺炎支原体形成附着细胞器,负责粘附宿主细胞和滑行运动。附着细胞器是一种膜突起,由许多分子组成,包括粘附素和细胞骨架蛋白。遗传操作技术是了解这种独特的分子机制的结构和功能的关键研究方法。在本章中,描述了使用Tn4001转座子载体对该物种进行标准基因工程的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信