Elnaz Ajami, Cong Fu, Sun Jin Park, Xuesong Wang, Hai Bo Wen
{"title":"Comparison of the Effects of Tissue Processing on the Physicochemical Properties of Bone Allografts.","authors":"Elnaz Ajami, Cong Fu, Sun Jin Park, Xuesong Wang, Hai Bo Wen","doi":"10.11607/jomi.9781","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> To address the hypothesis that the tissue processing methods of solvent dehydration and freeze-drying would differentially affect the physicochemical characteristics of four commercially available bone allografts and the adhesion and differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSCs) on such substrates in vitro. <b>Materials and Methods:</b> The surface morphology, surface area, and elemental composition of four commercially available cancellous bone allografts were examined using SEM, Brunauer-Emmett-Teller (BET) gas adsorption, and inductively coupled plasma (ICP) analyses. SEM was also employed to compare the allograft surfaces to that of human bone exposed by in vitro osteoclastic resorption. The allografts were seeded with hBMSCs, and the number of adhered cells was assessed at 3 and 7 days. Alkaline phosphatase (ALP) activity was quantified as a measure of osteogenic differentiation after 21 days. <b>Results:</b> Marked differences were seen between the physicochemical characteristics of the solvent-dehydrated and freeze-dried allografts, as well as between their resulting bone microarchitectures and that of osteoclast-resorbed human bone. Increased hBMSC adhesion and differentiation were observed on the solvent-dehydrated allografts compared to freeze-dried allografts, which suggests a higher putative osteogenic potential. The latter was attributed to better preservation of the bone collagen microarchitecture integrity, which may provide not only a more complex substrate architecture, but also a more favorable microenvironment to allow nutrients and oxygen to flow to the adhered cells. <b>Conclusion:</b> Commercially available cancellous bone allografts significantly differ in their physicochemical characteristics, stemming from differences in tissue processing and sterilization methods undertaken by tissue banks. These differences impact the response of MSCs in vitro and may alter the biologic performance of the grafts in vivo. Therefore, it is important to consider these characteristics when choosing a bone substitute for clinical application, as the physicochemical properties of the grafts play a crucial role in their interactions with the biologic environment and subsequent incorporation into the native bone.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"38 1","pages":"169-180"},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11607/jomi.9781","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To address the hypothesis that the tissue processing methods of solvent dehydration and freeze-drying would differentially affect the physicochemical characteristics of four commercially available bone allografts and the adhesion and differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSCs) on such substrates in vitro. Materials and Methods: The surface morphology, surface area, and elemental composition of four commercially available cancellous bone allografts were examined using SEM, Brunauer-Emmett-Teller (BET) gas adsorption, and inductively coupled plasma (ICP) analyses. SEM was also employed to compare the allograft surfaces to that of human bone exposed by in vitro osteoclastic resorption. The allografts were seeded with hBMSCs, and the number of adhered cells was assessed at 3 and 7 days. Alkaline phosphatase (ALP) activity was quantified as a measure of osteogenic differentiation after 21 days. Results: Marked differences were seen between the physicochemical characteristics of the solvent-dehydrated and freeze-dried allografts, as well as between their resulting bone microarchitectures and that of osteoclast-resorbed human bone. Increased hBMSC adhesion and differentiation were observed on the solvent-dehydrated allografts compared to freeze-dried allografts, which suggests a higher putative osteogenic potential. The latter was attributed to better preservation of the bone collagen microarchitecture integrity, which may provide not only a more complex substrate architecture, but also a more favorable microenvironment to allow nutrients and oxygen to flow to the adhered cells. Conclusion: Commercially available cancellous bone allografts significantly differ in their physicochemical characteristics, stemming from differences in tissue processing and sterilization methods undertaken by tissue banks. These differences impact the response of MSCs in vitro and may alter the biologic performance of the grafts in vivo. Therefore, it is important to consider these characteristics when choosing a bone substitute for clinical application, as the physicochemical properties of the grafts play a crucial role in their interactions with the biologic environment and subsequent incorporation into the native bone.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.