{"title":"Finding Rearrangements in Nanopore DNA Reads with LAST and dnarrange.","authors":"Martin C Frith, Satomi Mitsuhashi","doi":"10.1007/978-1-0716-2996-3_12","DOIUrl":null,"url":null,"abstract":"<p><p>Long-read DNA sequencing techniques such as nanopore are especially useful for characterizing complex sequence rearrangements, which occur in some genetic diseases and also during evolution. Analyzing the sequence data to understand such rearrangements is not trivial, due to sequencing error, rearrangement intricacy, and abundance of repeated similar sequences in genomes.The LAST and dnarrange software packages can resolve complex relationships between DNA sequences and characterize changes such as gene conversion, processed pseudogene insertion, and chromosome shattering. They can filter out numerous rearrangements shared by controls, e.g., healthy humans versus a patient, to focus on rearrangements unique to the patient. One useful ingredient is last-train, which learns the rates (probabilities) of deletions, insertions, and each kind of base match and mismatch. These probabilities are then used to find the most likely sequence relationships/alignments, which is especially useful for DNA with unusual rates, such as DNA from Plasmodium falciparum (malaria) with ∼80% a+t. This is also useful for less-studied species that lack reference genomes, so the DNA reads are compared to a different species' genome. We also point out that a reference genome with ancestral alleles would be ideal.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2632 ","pages":"161-175"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-2996-3_12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Long-read DNA sequencing techniques such as nanopore are especially useful for characterizing complex sequence rearrangements, which occur in some genetic diseases and also during evolution. Analyzing the sequence data to understand such rearrangements is not trivial, due to sequencing error, rearrangement intricacy, and abundance of repeated similar sequences in genomes.The LAST and dnarrange software packages can resolve complex relationships between DNA sequences and characterize changes such as gene conversion, processed pseudogene insertion, and chromosome shattering. They can filter out numerous rearrangements shared by controls, e.g., healthy humans versus a patient, to focus on rearrangements unique to the patient. One useful ingredient is last-train, which learns the rates (probabilities) of deletions, insertions, and each kind of base match and mismatch. These probabilities are then used to find the most likely sequence relationships/alignments, which is especially useful for DNA with unusual rates, such as DNA from Plasmodium falciparum (malaria) with ∼80% a+t. This is also useful for less-studied species that lack reference genomes, so the DNA reads are compared to a different species' genome. We also point out that a reference genome with ancestral alleles would be ideal.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.