{"title":"Effect of multimodularity and spatial organization of glycoside hydrolases on catalysis.","authors":"Víctor Barba-Cedillo, Cédric Y Montanier","doi":"10.1042/EBC20220167","DOIUrl":null,"url":null,"abstract":"<p><p>The wide diversity among the carbohydrate-active enzymes (CAZymes) reflects the equally broad versatility in terms of composition and chemicals bonds found in the plant cell wall polymers on which they are active. This diversity is also expressed through the various strategies developed to circumvent the recalcitrance of these substrates to biological degradation. Glycoside hydrolases (GHs) are the most abundant of the CAZymes and are expressed as isolated catalytic modules or in association with carbohydrate-binding module (CBM), acting in synergism within complex arrays of enzymes. This multimodularity can be even more complex. The cellulosome presents a scaffold protein immobilized to the outer membrane of some microorganisms on which enzymes are grafted to prevent their dispersion and increase catalytic synergism. In polysaccharide utilization loci (PUL), GHs are also distributed across the membranes of some bacteria to co-ordinate the deconstruction of polysaccharides and the internalization of metabolizable carbohydrates. Although the study and characterization of these enzymatic activities need to take into account the entirety of this complex organization-in particular because of the dynamics involved in it-technical problems limit the present study to isolated enzymes. However, these enzymatic complexes also have a spatiotemporal organization, whose still neglected aspect must be considered. In the present review, the different levels of multimodularity that can occur in GHs will be reviewed, from its simplest forms to the most complex. In addition, attempts to characterize or study the effect on catalytic activity of the spatial organization within GHs will be addressed.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"629-638"},"PeriodicalIF":5.6000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20220167","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The wide diversity among the carbohydrate-active enzymes (CAZymes) reflects the equally broad versatility in terms of composition and chemicals bonds found in the plant cell wall polymers on which they are active. This diversity is also expressed through the various strategies developed to circumvent the recalcitrance of these substrates to biological degradation. Glycoside hydrolases (GHs) are the most abundant of the CAZymes and are expressed as isolated catalytic modules or in association with carbohydrate-binding module (CBM), acting in synergism within complex arrays of enzymes. This multimodularity can be even more complex. The cellulosome presents a scaffold protein immobilized to the outer membrane of some microorganisms on which enzymes are grafted to prevent their dispersion and increase catalytic synergism. In polysaccharide utilization loci (PUL), GHs are also distributed across the membranes of some bacteria to co-ordinate the deconstruction of polysaccharides and the internalization of metabolizable carbohydrates. Although the study and characterization of these enzymatic activities need to take into account the entirety of this complex organization-in particular because of the dynamics involved in it-technical problems limit the present study to isolated enzymes. However, these enzymatic complexes also have a spatiotemporal organization, whose still neglected aspect must be considered. In the present review, the different levels of multimodularity that can occur in GHs will be reviewed, from its simplest forms to the most complex. In addition, attempts to characterize or study the effect on catalytic activity of the spatial organization within GHs will be addressed.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.