Human umbilical cord blood-mesenchymal stem cell derived exosomes as an efficient nanocarrier for Docetaxel and miR-125a: Formulation optimization and anti-metastatic behaviour
{"title":"Human umbilical cord blood-mesenchymal stem cell derived exosomes as an efficient nanocarrier for Docetaxel and miR-125a: Formulation optimization and anti-metastatic behaviour","authors":"Moumita Basak , Biswajit Sahoo , Dharmendra Kumar Chaudhary , SaiBhargav Narisepalli , Swasti Tiwari , Deepak Chitkara , Anupama Mittal","doi":"10.1016/j.lfs.2023.121621","DOIUrl":null,"url":null,"abstract":"<div><h3>Aim</h3><p>Exosomes, as a nanocarrier for the co-delivery of biologicals and small anticancer molecules is yet in its infancy. Herein, we investigated hUCBMSC derived exosomes as a biogenic nanocarrier for the co-delivery of tumor suppressor miR-125a and microtubule destabilizing Docetaxel (DTX) to target the proliferative and migratory aggressiveness of the murine TNBC 4T1 cells.</p></div><div><h3>Main methods</h3><p>In this study, hUCBMSCs from the human umbilical cord blood cells (hUCB) were successfully transfected with miR-125a. Thereafter, DTX was encapsulated into both non-transfected and transfected exosomes by optimized mild sonication-incubation technique. The anticancer efficiency of hUCBMSC Exo-DTX and miR-125a Exo-DTX was compared by MTT and morphometric assay. The prominent anti-metastatic behaviour of the latter was confirmed by in-vitro wound healing and transwell invasion assay. Further, the synergistic effect of miR-125a and DTX was confirmed by F-actin and nuclear degradation by confocal and FESEM assay.</p></div><div><h3>Key findings</h3><p>hUCBMSC exosomes exhibited DTX payload of 8.86 ± 1.97 ng DTX/ μg exosomes and miRNA retention capacity equivalent to 12.31 ± 5.73 %. The co-loaded formulation (miR-125a Exo-DTX) exhibited IC<sub>50</sub> at 192.8 ng/ml in 4T1 cells, which is almost 2.36 folds' lower than the free DTX IC<sub>50</sub> (472.8 ng/ml). Additionally, miR-125a Exo-DTX treatment caused wound broadening upto 6.14<span><math><mo>±</mo></math></span>0.38 % while treatment with free DTX and miR-125a exosomes alone caused 18.71<span><math><mo>±</mo></math></span>4.5 % and 77.36<span><math><mo>±</mo></math></span>10.4 % of wound closure respectively in 36 h. miR-125a Exo-DTX treatment further exhibited significantly reduced invasiveness of 4T1 cells (by 3.5 ± 1.8 %) along with prominent cytoskeletal degradation and nuclear deformation as compared to the miR-125a exosomes treated group. The miR-125a expressing DTX loaded exosomal formulation clearly demonstrated the synergistic apoptotic and anti-migratory efficiency of the miR-125a Exo-DTX.</p></div><div><h3>Significance</h3><p>The synergistic anticancer and anti-metastatic effect of miR-125a Exo-DTX was observed due to presence of both DTX and miR-125a as the cargo of hUCBMSC derived exosomes.</p></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"322 ","pages":"Article 121621"},"PeriodicalIF":5.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320523002552","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3
Abstract
Aim
Exosomes, as a nanocarrier for the co-delivery of biologicals and small anticancer molecules is yet in its infancy. Herein, we investigated hUCBMSC derived exosomes as a biogenic nanocarrier for the co-delivery of tumor suppressor miR-125a and microtubule destabilizing Docetaxel (DTX) to target the proliferative and migratory aggressiveness of the murine TNBC 4T1 cells.
Main methods
In this study, hUCBMSCs from the human umbilical cord blood cells (hUCB) were successfully transfected with miR-125a. Thereafter, DTX was encapsulated into both non-transfected and transfected exosomes by optimized mild sonication-incubation technique. The anticancer efficiency of hUCBMSC Exo-DTX and miR-125a Exo-DTX was compared by MTT and morphometric assay. The prominent anti-metastatic behaviour of the latter was confirmed by in-vitro wound healing and transwell invasion assay. Further, the synergistic effect of miR-125a and DTX was confirmed by F-actin and nuclear degradation by confocal and FESEM assay.
Key findings
hUCBMSC exosomes exhibited DTX payload of 8.86 ± 1.97 ng DTX/ μg exosomes and miRNA retention capacity equivalent to 12.31 ± 5.73 %. The co-loaded formulation (miR-125a Exo-DTX) exhibited IC50 at 192.8 ng/ml in 4T1 cells, which is almost 2.36 folds' lower than the free DTX IC50 (472.8 ng/ml). Additionally, miR-125a Exo-DTX treatment caused wound broadening upto 6.140.38 % while treatment with free DTX and miR-125a exosomes alone caused 18.714.5 % and 77.3610.4 % of wound closure respectively in 36 h. miR-125a Exo-DTX treatment further exhibited significantly reduced invasiveness of 4T1 cells (by 3.5 ± 1.8 %) along with prominent cytoskeletal degradation and nuclear deformation as compared to the miR-125a exosomes treated group. The miR-125a expressing DTX loaded exosomal formulation clearly demonstrated the synergistic apoptotic and anti-migratory efficiency of the miR-125a Exo-DTX.
Significance
The synergistic anticancer and anti-metastatic effect of miR-125a Exo-DTX was observed due to presence of both DTX and miR-125a as the cargo of hUCBMSC derived exosomes.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.