Alvaro Sanchez, Djordje Bajic, Juan Diaz-Colunga, Abigail Skwara, Jean C C Vila, Seppe Kuehn
{"title":"The community-function landscape of microbial consortia.","authors":"Alvaro Sanchez, Djordje Bajic, Juan Diaz-Colunga, Abigail Skwara, Jean C C Vila, Seppe Kuehn","doi":"10.1016/j.cels.2022.12.011","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitatively linking the composition and function of microbial communities is a major aspiration of microbial ecology. Microbial community functions emerge from a complex web of molecular interactions between cells, which give rise to population-level interactions among strains and species. Incorporating this complexity into predictive models is highly challenging. Inspired by a similar problem in genetics of predicting quantitative phenotypes from genotypes, an ecological community-function (or structure-function) landscape could be defined that maps community composition and function. In this piece, we present an overview of our current understanding of these community landscapes, their uses, limitations, and open questions. We argue that exploiting the parallels between both landscapes could bring powerful predictive methodologies from evolution and genetics into ecology, providing a boost to our ability to engineer and optimize microbial consortia.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 2","pages":"122-134"},"PeriodicalIF":9.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2022.12.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 19
Abstract
Quantitatively linking the composition and function of microbial communities is a major aspiration of microbial ecology. Microbial community functions emerge from a complex web of molecular interactions between cells, which give rise to population-level interactions among strains and species. Incorporating this complexity into predictive models is highly challenging. Inspired by a similar problem in genetics of predicting quantitative phenotypes from genotypes, an ecological community-function (or structure-function) landscape could be defined that maps community composition and function. In this piece, we present an overview of our current understanding of these community landscapes, their uses, limitations, and open questions. We argue that exploiting the parallels between both landscapes could bring powerful predictive methodologies from evolution and genetics into ecology, providing a boost to our ability to engineer and optimize microbial consortia.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.