Benchmarking large language models for genomic knowledge with GeneTuring.

Xinyi Shang, Xu Liao, Zhicheng Ji, Wenpin Hou
{"title":"Benchmarking large language models for genomic knowledge with GeneTuring.","authors":"Xinyi Shang, Xu Liao, Zhicheng Ji, Wenpin Hou","doi":"10.1101/2023.03.11.532238","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) show promise in biomedical research, but their effectiveness for genomic inquiry remains unclear. We developed GeneTuring, a benchmark consisting of 16 genomics tasks with 1,600 curated questions, and manually evaluated 48,000 answers from ten LLM configurations, including GPT-4o (via API, ChatGPT with web access, and a custom GPT setup), GPT-3.5, Claude 3.5, Gemini Advanced, GeneGPT (both slim and full), BioGPT, and BioMedLM. A custom GPT-4o configuration integrated with NCBI APIs, developed in this study as SeqSnap, achieved the best overall performance. GPT-4o with web access and GeneGPT demonstrated complementary strengths. Our findings highlight both the promise and current limitations of LLMs in genomics, and emphasize the value of combining LLMs with domain-specific tools for robust genomic intelligence. GeneTuring offers a key resource for benchmarking and improving LLMs in biomedical research.</p><p><strong>Biographical note: </strong>Dr. Wenpin Hou is an Assistant Professor (tenure-track) in the Department of Biostatistics at Columbia University and member of its Data Science Institute, developing AI and statistical methods for decoding gene regulatory programs from single-cell and spatial multiomics data.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/79/09/nihpp-2023.03.11.532238v1.PMC10054955.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.11.532238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) show promise in biomedical research, but their effectiveness for genomic inquiry remains unclear. We developed GeneTuring, a benchmark consisting of 16 genomics tasks with 1,600 curated questions, and manually evaluated 48,000 answers from ten LLM configurations, including GPT-4o (via API, ChatGPT with web access, and a custom GPT setup), GPT-3.5, Claude 3.5, Gemini Advanced, GeneGPT (both slim and full), BioGPT, and BioMedLM. A custom GPT-4o configuration integrated with NCBI APIs, developed in this study as SeqSnap, achieved the best overall performance. GPT-4o with web access and GeneGPT demonstrated complementary strengths. Our findings highlight both the promise and current limitations of LLMs in genomics, and emphasize the value of combining LLMs with domain-specific tools for robust genomic intelligence. GeneTuring offers a key resource for benchmarking and improving LLMs in biomedical research.

Biographical note: Dr. Wenpin Hou is an Assistant Professor (tenure-track) in the Department of Biostatistics at Columbia University and member of its Data Science Institute, developing AI and statistical methods for decoding gene regulatory programs from single-cell and spatial multiomics data.

Abstract Image

Abstract Image

GeneTuring在基因组学中测试GPT模型。
生成预训练转换器(GPT)是功能强大的语言模型,在生物医学研究领域具有巨大的潜力。然而,众所周知,他们会产生人为幻觉,并在某些情况下提供看似正确的错误答案。我们开发了GeneTuring,这是一个包含600个基因组学问题的综合QA数据库,并手动为包括GPT-3、ChatGPT和New Bing在内的六个GPT模型返回的10800个答案打分。与其他模型相比,新冰的整体性能最好,并显著降低了人工智能幻觉的水平,这要归功于它能够识别自己在回答问题时的无能。我们认为,提高丧失能力意识与提高模型准确性以解决人工智能幻觉同样重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信