{"title":"Function, structure, evolution, regulation of a potent drug target, arylalkylamine N-acetyltransferase.","authors":"Lei Zhang, Yu Tang, David J Merkler, Qian Han","doi":"10.1016/bs.apcsb.2022.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the transacetylation of acetyl coenzyme A to arylamines and arylalkylamines. Based on three-dimensional structural information, aaNAT belongs to the GCN5-related N-acetyltransferases superfamily with a conserved acetyl-CoA binding domain (Dyda et al., 2000). By comparison of sequence similarity, aaNAT is usually divided into vertebrate aaNAT (VT-aaNAT) and non-vertebrate aaNAT (NV-aaNAT) (Cazaméa-Catalan et al., 2014). Insects have evolved multiple aaNATs in comparison to mammals, thus more diverse functions are also reflected in insects. This chapter will summarize previous studies on the function, regulation, structure and evolution of aaNAT, and provide insight into future pest management.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2022.11.002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Arylalkylamine N-acetyltransferase (aaNAT) catalyzes the transacetylation of acetyl coenzyme A to arylamines and arylalkylamines. Based on three-dimensional structural information, aaNAT belongs to the GCN5-related N-acetyltransferases superfamily with a conserved acetyl-CoA binding domain (Dyda et al., 2000). By comparison of sequence similarity, aaNAT is usually divided into vertebrate aaNAT (VT-aaNAT) and non-vertebrate aaNAT (NV-aaNAT) (Cazaméa-Catalan et al., 2014). Insects have evolved multiple aaNATs in comparison to mammals, thus more diverse functions are also reflected in insects. This chapter will summarize previous studies on the function, regulation, structure and evolution of aaNAT, and provide insight into future pest management.
期刊介绍:
Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.