{"title":"Origin of the propatagium in non-avian dinosaurs.","authors":"Yurika Uno, Tatsuya Hirasawa","doi":"10.1186/s40851-023-00204-x","DOIUrl":null,"url":null,"abstract":"<p><p>Avian wings as organs for aerial locomotion are furnished with a highly specialized musculoskeletal system compared with the forelimbs of other tetrapod vertebrates. Among the specializations, the propatagium, which accompanies a skeletal muscle spanning between the shoulder and wrist on the leading edge of the wing, represents an evolutionary novelty established at a certain point in the lineage toward crown birds. However, because of the rarity of soft-tissue preservation in the fossil record, the evolutionary origin of the avian propatagium has remained elusive. Here we focus on articulated skeletons in the fossil record to show that angles of elbow joints in fossils are indicators of the propatagium in extant lineages of diapsids (crown birds and non-dinosaurian diapsids), and then use this relationship to narrow down the phylogenetic position acquiring the propatagium to the common ancestor of maniraptorans. Our analyses support the hypothesis that the preserved propatagium-like soft tissues in non-avian theropod dinosaurs (oviraptorosaurian Caudipteryx and dromaeosaurian Microraptor) are homologous with the avian propatagium, and indicate that all maniraptoran dinosaurs likely possessed the propatagium even before the origin of flight. On the other hand, the preserved angles of wrist joints in non-avian theropods are significantly greater than those in birds, suggesting that the avian interlocking wing-folding mechanism involving the ulna and radius had not fully evolved in non-avian theropods. Our study underscores that the avian wing was acquired through modifications of preexisting structures including the feather and propatagium.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951497/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-023-00204-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Avian wings as organs for aerial locomotion are furnished with a highly specialized musculoskeletal system compared with the forelimbs of other tetrapod vertebrates. Among the specializations, the propatagium, which accompanies a skeletal muscle spanning between the shoulder and wrist on the leading edge of the wing, represents an evolutionary novelty established at a certain point in the lineage toward crown birds. However, because of the rarity of soft-tissue preservation in the fossil record, the evolutionary origin of the avian propatagium has remained elusive. Here we focus on articulated skeletons in the fossil record to show that angles of elbow joints in fossils are indicators of the propatagium in extant lineages of diapsids (crown birds and non-dinosaurian diapsids), and then use this relationship to narrow down the phylogenetic position acquiring the propatagium to the common ancestor of maniraptorans. Our analyses support the hypothesis that the preserved propatagium-like soft tissues in non-avian theropod dinosaurs (oviraptorosaurian Caudipteryx and dromaeosaurian Microraptor) are homologous with the avian propatagium, and indicate that all maniraptoran dinosaurs likely possessed the propatagium even before the origin of flight. On the other hand, the preserved angles of wrist joints in non-avian theropods are significantly greater than those in birds, suggesting that the avian interlocking wing-folding mechanism involving the ulna and radius had not fully evolved in non-avian theropods. Our study underscores that the avian wing was acquired through modifications of preexisting structures including the feather and propatagium.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.