The interplay between lytic polysaccharide monooxygenases and glycoside hydrolases.

IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Morten Sørlie, Malene Billeskov Keller, Peter Westh
{"title":"The interplay between lytic polysaccharide monooxygenases and glycoside hydrolases.","authors":"Morten Sørlie,&nbsp;Malene Billeskov Keller,&nbsp;Peter Westh","doi":"10.1042/EBC20220156","DOIUrl":null,"url":null,"abstract":"<p><p>In nature, enzymatic degradation of recalcitrant polysaccharides such as chitin and cellulose takes place by a synergistic interaction between glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The two different families of carbohydrate-active enzymes use two different mechanisms when breaking glycosidic bonds between sugar moieties. GHs employ a hydrolytic activity and LPMOs are oxidative. Consequently, the topologies of the active sites differ dramatically. GHs have tunnels or clefts lined with a sheet of aromatic amino acid residues accommodating single polymer chains being threaded into the active site. LPMOs are adapted to bind to the flat crystalline surfaces of chitin and cellulose. It is believed that the LPMO oxidative mechanism provides new chain ends that the GHs can attach to and degrade, often in a processive manner. Indeed, there are many reports of synergies as well as rate enhancements when LPMOs are applied in concert with GHs. Still, these enhancements vary in magnitude with respect to the nature of the GH and the LPMO. Moreover, impediment of GH catalysis is also observed. In the present review, we discuss central works where the interplay between LPMOs and GHs has been studied and comment on future challenges to be addressed to fully use the potential of this interplay to improve enzymatic polysaccharide degradation.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 3","pages":"551-559"},"PeriodicalIF":5.6000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20220156","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

In nature, enzymatic degradation of recalcitrant polysaccharides such as chitin and cellulose takes place by a synergistic interaction between glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). The two different families of carbohydrate-active enzymes use two different mechanisms when breaking glycosidic bonds between sugar moieties. GHs employ a hydrolytic activity and LPMOs are oxidative. Consequently, the topologies of the active sites differ dramatically. GHs have tunnels or clefts lined with a sheet of aromatic amino acid residues accommodating single polymer chains being threaded into the active site. LPMOs are adapted to bind to the flat crystalline surfaces of chitin and cellulose. It is believed that the LPMO oxidative mechanism provides new chain ends that the GHs can attach to and degrade, often in a processive manner. Indeed, there are many reports of synergies as well as rate enhancements when LPMOs are applied in concert with GHs. Still, these enhancements vary in magnitude with respect to the nature of the GH and the LPMO. Moreover, impediment of GH catalysis is also observed. In the present review, we discuss central works where the interplay between LPMOs and GHs has been studied and comment on future challenges to be addressed to fully use the potential of this interplay to improve enzymatic polysaccharide degradation.

多糖单加氧酶与糖苷水解酶的相互作用。
在自然界中,固定性多糖(如甲壳素和纤维素)的酶降解是通过糖苷水解酶(GHs)和多糖单加氧酶(LPMOs)之间的协同作用进行的。两个不同的碳水化合物活性酶家族在破坏糖段之间的糖苷键时使用两种不同的机制。GHs具有水解活性,而LPMOs具有氧化活性。因此,活性位点的拓扑结构差别很大。GHs具有通道或缝隙,内衬有一层芳香氨基酸残基,可容纳被螺纹插入活性位点的单链聚合物。LPMOs适合结合到几丁质和纤维素的平坦结晶表面。人们认为,LPMO氧化机制提供了GHs可以附着和降解的新链端,通常以一种渐进的方式进行。事实上,当LPMOs与GHs一起应用时,有许多关于协同效应和速率提高的报告。尽管如此,这些增强的幅度在GH和LPMO的性质方面有所不同。此外,还观察到生长激素的催化障碍。在本综述中,我们讨论了LPMOs和GHs之间相互作用的研究中心工作,并评论了未来需要解决的挑战,以充分利用这种相互作用的潜力来改善酶促多糖降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Essays in biochemistry
Essays in biochemistry 生物-生化与分子生物学
CiteScore
10.50
自引率
0.00%
发文量
105
审稿时长
>12 weeks
期刊介绍: Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic. Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points. Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place. Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信