{"title":"DNA-based Nanomaterials in the Immunotherapy.","authors":"Hongxiao Huang, Shaojingya Gao, Xiaoxiao Cai","doi":"10.2174/1389200224666230413082047","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nucleic acid is a genetic material that shows great potential in a variety of biological applications. With the help of nanotechnology, the fabrication of DNA-based nanomaterials has emerged. From genetic DNA to non-genetic functional DNA, from single-layer and flat structure to multi-layer and complex structure, and from two-dimensional to three-dimensional structure, DNA-based nanomaterials have been greatly developed, bringing significant changes to our lives. In recent years, the research of DNA-based nanomaterials for biological applications has developed rapidly.</p><p><strong>Methods: </strong>We extensively searched the bibliographic database for a research article on nanotechnology and immunotherapy and further discussed the advantages and drawbacks of current DNA-based nanomaterials in immunotherapy. By comparing DNA-based nanomaterials with traditional biomaterials applied in immunotherapy, we found that DNA-based nanomaterials are a promising candidate material in Immunotherapy.</p><p><strong>Results: </strong>Due to the unrivaled editability and biocompatibility, DNA-based nanomaterials are not only investigated as therapeutic particles to influence cell behavior but also as drug delivery systems to treat a variety of diseases. Moreover, when DNA-based nanomaterials are loaded with therapeutic agents, including chemical drugs and biomolecules, which significantly enhance the therapeutic effects, DNA-based nanomaterials have great potential in immunotherapy.</p><p><strong>Conclusion: </strong>This review summarizes the structural development history of DNA-based nanomaterials and their biological applications in immunotherapy, including the potential treatment of cancer, autoimmune diseases, and inflammatory diseases.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"367-384"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389200224666230413082047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Nucleic acid is a genetic material that shows great potential in a variety of biological applications. With the help of nanotechnology, the fabrication of DNA-based nanomaterials has emerged. From genetic DNA to non-genetic functional DNA, from single-layer and flat structure to multi-layer and complex structure, and from two-dimensional to three-dimensional structure, DNA-based nanomaterials have been greatly developed, bringing significant changes to our lives. In recent years, the research of DNA-based nanomaterials for biological applications has developed rapidly.
Methods: We extensively searched the bibliographic database for a research article on nanotechnology and immunotherapy and further discussed the advantages and drawbacks of current DNA-based nanomaterials in immunotherapy. By comparing DNA-based nanomaterials with traditional biomaterials applied in immunotherapy, we found that DNA-based nanomaterials are a promising candidate material in Immunotherapy.
Results: Due to the unrivaled editability and biocompatibility, DNA-based nanomaterials are not only investigated as therapeutic particles to influence cell behavior but also as drug delivery systems to treat a variety of diseases. Moreover, when DNA-based nanomaterials are loaded with therapeutic agents, including chemical drugs and biomolecules, which significantly enhance the therapeutic effects, DNA-based nanomaterials have great potential in immunotherapy.
Conclusion: This review summarizes the structural development history of DNA-based nanomaterials and their biological applications in immunotherapy, including the potential treatment of cancer, autoimmune diseases, and inflammatory diseases.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.