The Integrative Studies on the Functional A-to-I RNA Editing Events in Human Cancers.

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY
Genomics, Proteomics & Bioinformatics Pub Date : 2023-06-01 Epub Date: 2023-01-25 DOI:10.1016/j.gpb.2022.12.010
Sijia Wu, Zhiwei Fan, Pora Kim, Liyu Huang, Xiaobo Zhou
{"title":"The Integrative Studies on the Functional A-to-I RNA Editing Events in Human Cancers.","authors":"Sijia Wu, Zhiwei Fan, Pora Kim, Liyu Huang, Xiaobo Zhou","doi":"10.1016/j.gpb.2022.12.010","DOIUrl":null,"url":null,"abstract":"<p><p>Adenosine-to-inosine (A-to-I) RNA editing, constituting nearly 90% of all RNA editing events in humans, has been reported to contribute to the tumorigenesis in diverse cancers. However, the comprehensive map for functional A-to-I RNA editing events in cancers is still insufficient. To fill this gap, we systematically and intensively analyzed multiple tumorigenic mechanisms of A-to-I RNA editing events in samples across 33 cancer types from The Cancer Genome Atlas. For individual candidate among ∼ 1,500,000 quantified RNA editing events, we performed diverse types of downstream functional annotations. Finally, we identified 24,236 potentially functional A-to-I RNA editing events, including the cases in APOL1, IGFBP3, GRIA2, BLCAP, and miR-589-3p. These events might play crucial roles in the scenarios of tumorigenesis, due to their tumor-related editing frequencies or probable effects on altered expression profiles, protein functions, splicing patterns, and microRNA regulations of tumor genes. Our functional A-to-I RNA editing events (https://ccsm.uth.edu/CAeditome/) will help better understand the cancer pathology from the A-to-I RNA editing aspect.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":" ","pages":"619-631"},"PeriodicalIF":11.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787018/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gpb.2022.12.010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Adenosine-to-inosine (A-to-I) RNA editing, constituting nearly 90% of all RNA editing events in humans, has been reported to contribute to the tumorigenesis in diverse cancers. However, the comprehensive map for functional A-to-I RNA editing events in cancers is still insufficient. To fill this gap, we systematically and intensively analyzed multiple tumorigenic mechanisms of A-to-I RNA editing events in samples across 33 cancer types from The Cancer Genome Atlas. For individual candidate among ∼ 1,500,000 quantified RNA editing events, we performed diverse types of downstream functional annotations. Finally, we identified 24,236 potentially functional A-to-I RNA editing events, including the cases in APOL1, IGFBP3, GRIA2, BLCAP, and miR-589-3p. These events might play crucial roles in the scenarios of tumorigenesis, due to their tumor-related editing frequencies or probable effects on altered expression profiles, protein functions, splicing patterns, and microRNA regulations of tumor genes. Our functional A-to-I RNA editing events (https://ccsm.uth.edu/CAeditome/) will help better understand the cancer pathology from the A-to-I RNA editing aspect.

人类癌症中功能性A-to-I RNA编辑事件的综合研究。
腺苷到肌苷(A-to-I)RNA编辑占人类所有RNA编辑事件的近90%,据报道有助于多种癌症的肿瘤发生。然而,癌症中功能性A-to-I RNA编辑事件的全面图谱仍然不足。为了填补这一空白,我们系统深入地分析了癌症基因组图谱中33种癌症类型样本中A-To-I RNA编辑事件的多种致瘤机制。对于约1500000个定量RNA编辑事件中的单个候选者,我们进行了不同类型的下游功能注释。最后,我们确定了24236个潜在的功能性A-to-I RNA编辑事件,包括APOL1、IGFBP3、GRIA2、BLCAP和miR-589-3p中的病例。这些事件可能在肿瘤发生的场景中发挥关键作用,因为它们与肿瘤相关的编辑频率或可能对肿瘤基因的表达谱、蛋白质功能、剪接模式和微小RNA调节的改变产生影响。我们的功能性A-to-I RNA编辑活动(https://ccsm.uth.edu/CAeditome/)将有助于从A-to-I RNA编辑方面更好地理解癌症病理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信