The policy case for designating EMS teams for vulnerable patient populations: Evidence from an intervention in Boston.

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES
Health Care Management Science Pub Date : 2024-03-01 Epub Date: 2023-04-12 DOI:10.1007/s10729-023-09635-6
Mark Brennan, Sophia Dyer, Jonas Jonasson, James Salvia, Laura Segal, Erin Serino, Justin Steil
{"title":"The policy case for designating EMS teams for vulnerable patient populations: Evidence from an intervention in Boston.","authors":"Mark Brennan, Sophia Dyer, Jonas Jonasson, James Salvia, Laura Segal, Erin Serino, Justin Steil","doi":"10.1007/s10729-023-09635-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study documents more than five years of analysis that drove the policy case, deployment, and retrospective evaluation for an innovative service model that enables Boston Emergency Medical Services (EMS) to respond quickly and effectively to investigation incidents in an area of heavy need in Boston. These investigation incidents are typically calls for service from passers-by or other third-party callers requesting that Boston EMS check in on individuals, often those who may appear to have an altered mental status or to be unhoused. First, this study reports the pre-intervention analytics in 2017 that built the policy case for service segmentation, a new Community Assistance Team designated \"Squad 80\" that primarily responds to investigation incidents in one broad area of the city with high rates of substance abuse and homelessness, helping patients who often refuse ambulance transport connect to social services. Second, this study reports a post-intervention, observational evaluation of its operational advantages and trade-offs. We observe that incidents involving the Community Assistance Team have significantly shorter response times and result in fewer transports to emergency departments than investigation incidents not involving the unit, leading to fewer ambulance unit-hours utilized across the system. This study documents the descriptive analytics that built the successful policy case for a substantive change in the healthcare-delivery supply chain in Boston and how this change offers operational advantages. It is written to be an accessible guide to the analysts and policy makers considering emergency services segmentation, an important frontier in equitable public-service delivery.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":" ","pages":"72-87"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091313/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-023-09635-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

This study documents more than five years of analysis that drove the policy case, deployment, and retrospective evaluation for an innovative service model that enables Boston Emergency Medical Services (EMS) to respond quickly and effectively to investigation incidents in an area of heavy need in Boston. These investigation incidents are typically calls for service from passers-by or other third-party callers requesting that Boston EMS check in on individuals, often those who may appear to have an altered mental status or to be unhoused. First, this study reports the pre-intervention analytics in 2017 that built the policy case for service segmentation, a new Community Assistance Team designated "Squad 80" that primarily responds to investigation incidents in one broad area of the city with high rates of substance abuse and homelessness, helping patients who often refuse ambulance transport connect to social services. Second, this study reports a post-intervention, observational evaluation of its operational advantages and trade-offs. We observe that incidents involving the Community Assistance Team have significantly shorter response times and result in fewer transports to emergency departments than investigation incidents not involving the unit, leading to fewer ambulance unit-hours utilized across the system. This study documents the descriptive analytics that built the successful policy case for a substantive change in the healthcare-delivery supply chain in Boston and how this change offers operational advantages. It is written to be an accessible guide to the analysts and policy makers considering emergency services segmentation, an important frontier in equitable public-service delivery.

Abstract Image

Abstract Image

Abstract Image

为弱势病人群体指定急救队的政策依据:波士顿干预措施的证据。
本研究记录了五年多来的分析,这些分析推动了对创新服务模式的政策论证、部署和回顾评估,该模式使波士顿紧急医疗服务(EMS)能够在波士顿需求旺盛的地区快速有效地应对调查事件。这些调查事件通常是路人或其他第三方呼叫者要求波士顿急救医疗服务对个人进行检查的服务请求,通常是那些看起来精神状态改变或无家可归的人。首先,本研究报告了 2017 年的干预前分析,该分析为服务细分提供了政策依据,一个新的社区援助小组被命名为 "80 小队",主要应对该市药物滥用和无家可归者高发的一个大区域内的调查事件,帮助那些经常拒绝救护车运送的病人与社会服务机构联系。其次,本研究报告对其行动优势和权衡进行了干预后观察评估。我们观察到,与不涉及社区援助小组的调查事件相比,涉及社区援助小组的事件响应时间明显更短,转送急诊科的次数也更少,从而减少了整个系统的救护车使用时数。本研究记录了描述性分析,为波士顿医疗服务供应链的实质性变革提供了成功的政策案例,以及这种变革如何带来运营优势。本研究旨在为考虑急救服务细分的分析师和政策制定者提供一份易懂的指南,急救服务细分是公平提供公共服务的一个重要前沿领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信