{"title":"Pyridine Derivatives as Potential Inhibitors for Coronavirus SARS-CoV-2: A Molecular Docking Study.","authors":"Kamaraj Karthick, Kalaiyar Swarnalatha","doi":"10.1177/11779322221146651","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus SARS-CoV-2, a causative agent for the global epidemic disease COVID-19, which has a highest modality rate. Several initiatives have been undertaken to repurpose current antiviral medications and tested the classic pyridine derivatives (PyDev), which have showed substantial therapeutic potential against a variety of illnesses and also have several biological functions such as, antibacterial, antiviral, and anti-inflammatory. However, limited reports are available for the treatment of Coronavirus SARS-CoV-2 using PyDev. Hence, the possibilities of the best-described PyDev molecules of powerful Coronavirus SARS-CoV-2 inhibitors have been attempted in this investigation. This study primarily focused on blocking four key targets of Coronavirus SARS-CoV-2 proteins. Terpyridine has shown the greatest inhibitory potential (with a binding energy of -8.8 kcal/mol) against all four coronavirus targets. This study results would pave the potential lead medication for Coronavirus SARS-CoV-2 therapeutic strategies.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/04/d9/10.1177_11779322221146651.PMC10076986.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322221146651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Coronavirus SARS-CoV-2, a causative agent for the global epidemic disease COVID-19, which has a highest modality rate. Several initiatives have been undertaken to repurpose current antiviral medications and tested the classic pyridine derivatives (PyDev), which have showed substantial therapeutic potential against a variety of illnesses and also have several biological functions such as, antibacterial, antiviral, and anti-inflammatory. However, limited reports are available for the treatment of Coronavirus SARS-CoV-2 using PyDev. Hence, the possibilities of the best-described PyDev molecules of powerful Coronavirus SARS-CoV-2 inhibitors have been attempted in this investigation. This study primarily focused on blocking four key targets of Coronavirus SARS-CoV-2 proteins. Terpyridine has shown the greatest inhibitory potential (with a binding energy of -8.8 kcal/mol) against all four coronavirus targets. This study results would pave the potential lead medication for Coronavirus SARS-CoV-2 therapeutic strategies.
期刊介绍:
Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.