Qiang Zhu, Yuping Xie, Ting Fu, Chengji Shi, Long Bai, Lin Liu, Jingang Xiao
{"title":"Application of Nucleic Acid Nanomaterials in the Treatment of Endocrine and Metabolic Diseases.","authors":"Qiang Zhu, Yuping Xie, Ting Fu, Chengji Shi, Long Bai, Lin Liu, Jingang Xiao","doi":"10.2174/1389200224666230410111015","DOIUrl":null,"url":null,"abstract":"<p><p>Endocrine and metabolic diseases are the most prevalent chronic diseases globally, posing the greatest hazard to human health. Although various medications are applied in treating endocrine and metabolic illnesses, numerous obstacles exist to overcome. Nucleic acid nanomaterials are novel materials synthesized and engineered in the laboratory. In this case, Nucleic acids are employed as non-biological nanomaterials instead of serving as carriers of genetic information in live cells. Because of their high biocompatibility and editability, nucleic acid nanomaterials were frequently employed in disease diagnosis and therapy. In this review, recent developments and new viewpoints on nucleic acid nanomaterials are highlighted in the fields of diabetes mellitus and other endocrine and metabolic diseases.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"385-392"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389200224666230410111015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endocrine and metabolic diseases are the most prevalent chronic diseases globally, posing the greatest hazard to human health. Although various medications are applied in treating endocrine and metabolic illnesses, numerous obstacles exist to overcome. Nucleic acid nanomaterials are novel materials synthesized and engineered in the laboratory. In this case, Nucleic acids are employed as non-biological nanomaterials instead of serving as carriers of genetic information in live cells. Because of their high biocompatibility and editability, nucleic acid nanomaterials were frequently employed in disease diagnosis and therapy. In this review, recent developments and new viewpoints on nucleic acid nanomaterials are highlighted in the fields of diabetes mellitus and other endocrine and metabolic diseases.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.