{"title":"Identification and Characterization of Dextran α-1,2-Debranching Enzyme from <i>Microbacterium dextranolyticum</i>.","authors":"Takatsugu Miyazaki, Hidekazu Tanaka, Shuntaro Nakamura, Hideo Dohra, Kazumi Funane","doi":"10.5458/jag.jag.JAG-2022_0013","DOIUrl":null,"url":null,"abstract":"<p><p>Dextran α-1,2-debranching enzyme (DDE) releases glucose with hydrolyzing α-(1→2)-glucosidic linkages in α-glucans, which are made up of dextran with α-(1→2)-branches and are generated by <i>Leuconostoc</i> bacteria. DDE was isolated from <i>Microbacterium dextranolyticum</i> (formerly known as <i>Flavobacterium</i> sp. M-73) 40 years ago, although the amino acid sequence of the enzyme has not been determined. Herein, we found a gene for this enzyme based on the partial amino acid sequences from native DDE and characterized the recombinant enzyme. DDE had a signal peptide, a glycoside hydrolase family 65 domain, a carbohydrate-binding module family 35 domain, a domain (D-domain) similar to the C-terminal domain of <i>Arthrobacter globiformis</i> glucodextranase, and a transmembrane region at the C-terminus. Recombinant DDE released glucose from α-(1→2)-branched α-glucans produced by <i>Leuconostoc citreum</i> strains B-1299, S-32, and S-64 and showed weak hydrolytic activity with kojibiose and kojitriose. No activity was detected for commercial dextran and <i>Leuconostoc citreum</i> B-1355 α-glucan, which do not contain α-(1→2)-linkages. The removal of the D-domain decreased the affinity for α-(1→2)-branched α-glucans but not for kojioligosaccharides, suggesting that D-domain plays a role in α-glucan binding. Genes for putative dextranases, oligo-1,6-glucosidase, sugar-binding protein, and permease were present in the vicinity of the DDE gene, and as a result these gene products may be necessary for the use of α-(1→2)-branched glucans. Our findings shed new light on how actinobacteria utilize polysaccharides produced by lactic acid bacteria.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"15-24"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/3b/70_jag.JAG-2022_0013.PMC10074034.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2022_0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dextran α-1,2-debranching enzyme (DDE) releases glucose with hydrolyzing α-(1→2)-glucosidic linkages in α-glucans, which are made up of dextran with α-(1→2)-branches and are generated by Leuconostoc bacteria. DDE was isolated from Microbacterium dextranolyticum (formerly known as Flavobacterium sp. M-73) 40 years ago, although the amino acid sequence of the enzyme has not been determined. Herein, we found a gene for this enzyme based on the partial amino acid sequences from native DDE and characterized the recombinant enzyme. DDE had a signal peptide, a glycoside hydrolase family 65 domain, a carbohydrate-binding module family 35 domain, a domain (D-domain) similar to the C-terminal domain of Arthrobacter globiformis glucodextranase, and a transmembrane region at the C-terminus. Recombinant DDE released glucose from α-(1→2)-branched α-glucans produced by Leuconostoc citreum strains B-1299, S-32, and S-64 and showed weak hydrolytic activity with kojibiose and kojitriose. No activity was detected for commercial dextran and Leuconostoc citreum B-1355 α-glucan, which do not contain α-(1→2)-linkages. The removal of the D-domain decreased the affinity for α-(1→2)-branched α-glucans but not for kojioligosaccharides, suggesting that D-domain plays a role in α-glucan binding. Genes for putative dextranases, oligo-1,6-glucosidase, sugar-binding protein, and permease were present in the vicinity of the DDE gene, and as a result these gene products may be necessary for the use of α-(1→2)-branched glucans. Our findings shed new light on how actinobacteria utilize polysaccharides produced by lactic acid bacteria.