Automatic Segmentation of Parkinson Disease Therapeutic Targets Using Nonlinear Registration and Clinical MR Imaging: Comparison of Methodology, Presence of Disease, and Quality Control.
Christopher Paul Kingsley Miller, Jennifer Muller, Angela M Noecker, Caio Matias, Mahdi Alizadeh, Cameron McIntyre, Chengyuan Wu
{"title":"Automatic Segmentation of Parkinson Disease Therapeutic Targets Using Nonlinear Registration and Clinical MR Imaging: Comparison of Methodology, Presence of Disease, and Quality Control.","authors":"Christopher Paul Kingsley Miller, Jennifer Muller, Angela M Noecker, Caio Matias, Mahdi Alizadeh, Cameron McIntyre, Chengyuan Wu","doi":"10.1159/000526719","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Accurate and precise delineation of the globus pallidus pars interna (GPi) and subthalamic nucleus (STN) is critical for the clinical treatment and research of Parkinson's disease (PD). Automated segmentation is a developing technology which addresses limitations of visualizing deep nuclei on MR imaging and standardizing their definition in research applications. We sought to compare manual segmentation with three workflows for template-to-patient nonlinear registration providing atlas-based automatic segmentation of deep nuclei.</p><p><strong>Methods: </strong>Bilateral GPi, STN, and red nucleus (RN) were segmented for 20 PD and 20 healthy control (HC) subjects using 3T MRIs acquired for clinical purposes. The automated workflows used were an option available in clinical practice and two common research protocols. Quality control (QC) was performed on registered templates via visual inspection of readily discernible brain structures. Manual segmentation using T1, proton density, and T2 sequences was used as \"ground truth\" data for comparison. Dice similarity coefficient (DSC) was used to assess agreement between segmented nuclei. Further analysis was done to compare the influences of disease state and QC classifications on DSC.</p><p><strong>Results: </strong>Automated segmentation workflows (CIT-S, CRV-AB, and DIST-S) had the highest DSC for the RN and lowest for the STN. Manual segmentations outperformed automated segmentation for all workflows and nuclei; however, for 3/9 workflows (CIT-S STN, CRV-AB STN, and CRV-AB GPi) the differences were not statically significant. HC and PD only showed significant differences in 1/9 comparisons (DIST-S GPi). QC classification only demonstrated significantly higher DSC in 2/9 comparisons (CRV-AB RN and GPi).</p><p><strong>Conclusion: </strong>Manual segmentations generally performed better than automated segmentations. Disease state does not appear to have a significant effect on the quality of automated segmentations via nonlinear template-to-patient registration. Notably, visual inspection of template registration is a poor indicator of the accuracy of deep nuclei segmentation. As automatic segmentation methods continue to evolve, efficient and reliable QC methods will be necessary to support safe and effective integration into clinical workflows.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000526719","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Accurate and precise delineation of the globus pallidus pars interna (GPi) and subthalamic nucleus (STN) is critical for the clinical treatment and research of Parkinson's disease (PD). Automated segmentation is a developing technology which addresses limitations of visualizing deep nuclei on MR imaging and standardizing their definition in research applications. We sought to compare manual segmentation with three workflows for template-to-patient nonlinear registration providing atlas-based automatic segmentation of deep nuclei.
Methods: Bilateral GPi, STN, and red nucleus (RN) were segmented for 20 PD and 20 healthy control (HC) subjects using 3T MRIs acquired for clinical purposes. The automated workflows used were an option available in clinical practice and two common research protocols. Quality control (QC) was performed on registered templates via visual inspection of readily discernible brain structures. Manual segmentation using T1, proton density, and T2 sequences was used as "ground truth" data for comparison. Dice similarity coefficient (DSC) was used to assess agreement between segmented nuclei. Further analysis was done to compare the influences of disease state and QC classifications on DSC.
Results: Automated segmentation workflows (CIT-S, CRV-AB, and DIST-S) had the highest DSC for the RN and lowest for the STN. Manual segmentations outperformed automated segmentation for all workflows and nuclei; however, for 3/9 workflows (CIT-S STN, CRV-AB STN, and CRV-AB GPi) the differences were not statically significant. HC and PD only showed significant differences in 1/9 comparisons (DIST-S GPi). QC classification only demonstrated significantly higher DSC in 2/9 comparisons (CRV-AB RN and GPi).
Conclusion: Manual segmentations generally performed better than automated segmentations. Disease state does not appear to have a significant effect on the quality of automated segmentations via nonlinear template-to-patient registration. Notably, visual inspection of template registration is a poor indicator of the accuracy of deep nuclei segmentation. As automatic segmentation methods continue to evolve, efficient and reliable QC methods will be necessary to support safe and effective integration into clinical workflows.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.