{"title":"Expression of the Ovine Gene and the Relationship Between Its Polymorphism and Feed Efficiency Traits.","authors":"Xiwen Zeng, Weimin Wang, Deyin Zhang, Xiaolong Li, Yukun Zhang, Yuan Zhao, Liming Zhao, Jianghui Wang, Dan Xu, Jiangbo Cheng, Wenxin Li, Bubo Zhou, Changchun Lin, Xiaobin Yang, Rui Zhai, Zongwu Ma, Jia Liu, Panpan Cui, Xiuxiu Weng, Weiwei Wu, Xiaoxue Zhang, Wenxin Zheng","doi":"10.1089/dna.2022.0529","DOIUrl":null,"url":null,"abstract":"<p><p>In the mutton industry, feed efficiency traits have the greatest influence on the economic benefits of sheep raised in housing conditions. In this study, quantitative real-time PCR (qRT-PCR), Sanger sequencing, and KASPar methods were used to detect the expression levels of the B cell scaffold protein with ankyrin repeats 1 (<i>BANK1</i>) gene and the relationship between its polymorphism and feed efficiency traits in Hu sheep. The qRT-PCR results showed that the <i>BANK1</i> gene was extensively expressed in 10 tissues and it was expressed at remarkably higher levels in lymph than in other tissues (<i>p</i> < 0.05). Then, the polymorphism locus, g.93888 A > T, was detected in intron 4 of the <i>BANK1</i> gene and proved to be remarkably associated with feed efficiency traits (<i>p</i> < 0.05). Hence, the <i>BANK1</i> gene can be used as a candidate gene for improving the feed efficiency of Hu sheep and this locus could be used as a potential molecular marker for breeding high-feed efficiency sheep in future breeding efforts.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"42 4","pages":"194-202"},"PeriodicalIF":2.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0529","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In the mutton industry, feed efficiency traits have the greatest influence on the economic benefits of sheep raised in housing conditions. In this study, quantitative real-time PCR (qRT-PCR), Sanger sequencing, and KASPar methods were used to detect the expression levels of the B cell scaffold protein with ankyrin repeats 1 (BANK1) gene and the relationship between its polymorphism and feed efficiency traits in Hu sheep. The qRT-PCR results showed that the BANK1 gene was extensively expressed in 10 tissues and it was expressed at remarkably higher levels in lymph than in other tissues (p < 0.05). Then, the polymorphism locus, g.93888 A > T, was detected in intron 4 of the BANK1 gene and proved to be remarkably associated with feed efficiency traits (p < 0.05). Hence, the BANK1 gene can be used as a candidate gene for improving the feed efficiency of Hu sheep and this locus could be used as a potential molecular marker for breeding high-feed efficiency sheep in future breeding efforts.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.