Developments in rapid hydrogen-deuterium exchange methods.

IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vimanda Chow, Esther Wolf, Cristina Lento, Derek J Wilson
{"title":"Developments in rapid hydrogen-deuterium exchange methods.","authors":"Vimanda Chow,&nbsp;Esther Wolf,&nbsp;Cristina Lento,&nbsp;Derek J Wilson","doi":"10.1042/EBC20220174","DOIUrl":null,"url":null,"abstract":"<p><p>Biological macromolecules, such as proteins, nucleic acids, and carbohydrates, contain heteroatom-bonded hydrogens that undergo exchange with solvent hydrogens on timescales ranging from microseconds to hours. In hydrogen-deuterium exchange mass spectrometry (HDX-MS), this exchange process is used to extract information about biomolecular structure and dynamics. This minireview focuses on millisecond timescale HDX-MS measurements, which, while less common than 'conventional' timescale (seconds to hours) HDX-MS, provide a unique window into weakly structured species, weak (or fast cycling) binding interactions, and subtle shifts in conformational dynamics. This includes intrinsically disordered proteins and regions (IDPs/IDRs) that are associated with cancer and amyloidotic neurodegenerative disease. For nucleic acids and carbohydrates, structures such as isomers, stems, and loops, can be elucidated and overall structural rigidity can be assessed. We will provide a brief overview of technical developments in rapid HDX followed by highlights of various applications, emphasising the importance of broadening the HDX timescale to improve throughput and to capture a wider range of function-relevant dynamic and structural shifts.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"67 2","pages":"165-174"},"PeriodicalIF":5.6000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20220174","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Biological macromolecules, such as proteins, nucleic acids, and carbohydrates, contain heteroatom-bonded hydrogens that undergo exchange with solvent hydrogens on timescales ranging from microseconds to hours. In hydrogen-deuterium exchange mass spectrometry (HDX-MS), this exchange process is used to extract information about biomolecular structure and dynamics. This minireview focuses on millisecond timescale HDX-MS measurements, which, while less common than 'conventional' timescale (seconds to hours) HDX-MS, provide a unique window into weakly structured species, weak (or fast cycling) binding interactions, and subtle shifts in conformational dynamics. This includes intrinsically disordered proteins and regions (IDPs/IDRs) that are associated with cancer and amyloidotic neurodegenerative disease. For nucleic acids and carbohydrates, structures such as isomers, stems, and loops, can be elucidated and overall structural rigidity can be assessed. We will provide a brief overview of technical developments in rapid HDX followed by highlights of various applications, emphasising the importance of broadening the HDX timescale to improve throughput and to capture a wider range of function-relevant dynamic and structural shifts.

氢-氘快速交换方法的研究进展。
生物大分子,如蛋白质、核酸和碳水化合物,含有杂原子键合的氢,它们在微秒到小时的时间尺度上与溶剂氢进行交换。在氢-氘交换质谱(HDX-MS)中,这种交换过程用于提取生物分子结构和动力学信息。这篇微型综述的重点是毫秒时间尺度HDX-MS的测量,虽然这种测量不像“传统”时间尺度(秒到小时)HDX-MS那么常见,但它为研究弱结构物种、弱(或快速循环)结合相互作用以及构象动力学的微妙变化提供了一个独特的窗口。这包括与癌症和淀粉样神经退行性疾病相关的内在紊乱蛋白和区域(IDPs/IDRs)。对于核酸和碳水化合物,可以阐明异构体、茎和环等结构,并可以评估整体结构刚性。我们将简要概述快速HDX的技术发展,然后重点介绍各种应用,强调扩大HDX时间尺度以提高吞吐量和捕捉更广泛的功能相关动态和结构变化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Essays in biochemistry
Essays in biochemistry 生物-生化与分子生物学
CiteScore
10.50
自引率
0.00%
发文量
105
审稿时长
>12 weeks
期刊介绍: Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic. Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points. Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place. Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信