Convergence d'un schéma à profils stationnaires pour les équations quasi linéaires du premier ordre avec termes sources

Alain Yves Le Roux, Marie Noëlle Le Roux
{"title":"Convergence d'un schéma à profils stationnaires pour les équations quasi linéaires du premier ordre avec termes sources","authors":"Alain Yves Le Roux,&nbsp;Marie Noëlle Le Roux","doi":"10.1016/S0764-4442(01)01975-9","DOIUrl":null,"url":null,"abstract":"<div><p>When a source term is present, the constants are no longer solutions to quasilinear equations. Some numerical techniques based on this property need to be generalized. A stationary profile scheme uses an approximate solution made of stationary solutions in each cell. We propose such a scheme, for which we prove some results of stability and convergence towards the entropy solution. The numerical tests show that this scheme is well adapted to the simulation of well balanced states, and often far better than the usual splitting methods.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 703-706"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)01975-9","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201019759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

When a source term is present, the constants are no longer solutions to quasilinear equations. Some numerical techniques based on this property need to be generalized. A stationary profile scheme uses an approximate solution made of stationary solutions in each cell. We propose such a scheme, for which we prove some results of stability and convergence towards the entropy solution. The numerical tests show that this scheme is well adapted to the simulation of well balanced states, and often far better than the usual splitting methods.

具有源项的一阶拟线性方程的稳态轮廓图的收敛性
当源项存在时,常数不再是拟线性方程的解。一些基于这一性质的数值方法需要推广。固定剖面方案使用由每个单元中的固定解组成的近似解。我们提出了这样一个方案,并证明了该方案对熵解的稳定性和收敛性。数值试验表明,该方案能很好地适应平衡态的模拟,且往往远优于常用的分裂方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信