Hayder A Giha, Rabab A Abdulwahab, Jaafar Abbas, Zakia Shinwari, Ayodele Alaiya
{"title":"Sex-Biased Expression of Genes Allocated in the Autosomal Chromosomes: Blood LC-MS/MS Protein Profiling in Healthy Subjects.","authors":"Hayder A Giha, Rabab A Abdulwahab, Jaafar Abbas, Zakia Shinwari, Ayodele Alaiya","doi":"10.1155/2023/8822205","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sex and gender have a large impact in human health and disease prediction. According to genomic/genetics, men differ from women by a limited number of genes in Y chromosome, while the phenotypes of the 2 sexes differ markedly.</p><p><strong>Methods: </strong>In this study, serum samples from six healthy Bahraini men and women were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Bioinformatics databases and tools were used for protein/peptide (PPs) identification and gene localization. The PPs that differed significantly (<i>p</i> < 0.05, ANOVA) in abundance with a fold change (FC) of ≥1.5 were identified.</p><p><strong>Results: </strong>Revealed 20 PPs, 11 were upregulated in women with very high FC (up to 8 folds), and 9 were upregulated in men but with much lower FC. The PPs are encoded by genes located in autosomal chromosomes, indicative of sex-biased gene expression. The only PP related to sex, the sex hormone-binding globulin, was upregulated in women. The remaining PPs were involved in immunity, lipid metabolism, gene expression, connective tissue, and others, with some overlap in function.</p><p><strong>Conclusions: </strong>The upregulated PPs in men or women are mostly reflecting the functon or risk/protection provided by the PPs to the specific sex, e.g., Apo-B100 of LDLC. Finally, the basis of sex-biased gene expression and sex phenotypic differences needs further investigation.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2023 ","pages":"8822205"},"PeriodicalIF":1.4000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/8822205","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sex and gender have a large impact in human health and disease prediction. According to genomic/genetics, men differ from women by a limited number of genes in Y chromosome, while the phenotypes of the 2 sexes differ markedly.
Methods: In this study, serum samples from six healthy Bahraini men and women were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Bioinformatics databases and tools were used for protein/peptide (PPs) identification and gene localization. The PPs that differed significantly (p < 0.05, ANOVA) in abundance with a fold change (FC) of ≥1.5 were identified.
Results: Revealed 20 PPs, 11 were upregulated in women with very high FC (up to 8 folds), and 9 were upregulated in men but with much lower FC. The PPs are encoded by genes located in autosomal chromosomes, indicative of sex-biased gene expression. The only PP related to sex, the sex hormone-binding globulin, was upregulated in women. The remaining PPs were involved in immunity, lipid metabolism, gene expression, connective tissue, and others, with some overlap in function.
Conclusions: The upregulated PPs in men or women are mostly reflecting the functon or risk/protection provided by the PPs to the specific sex, e.g., Apo-B100 of LDLC. Finally, the basis of sex-biased gene expression and sex phenotypic differences needs further investigation.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.