Cross-Sectional HIV Incidence Surveillance: A Benchmarking of Approaches for Estimating the 'Mean Duration of Recent Infection'.

Reshma Kassanjee, Daniela De Angelis, Marian Farah, Debra Hanson, Jan Phillipus Lourens Labuschagne, Oliver Laeyendecker, Stéphane Le Vu, Brian Tom, Rui Wang, Alex Welte
{"title":"Cross-Sectional HIV Incidence Surveillance: A Benchmarking of Approaches for Estimating the 'Mean Duration of Recent Infection'.","authors":"Reshma Kassanjee,&nbsp;Daniela De Angelis,&nbsp;Marian Farah,&nbsp;Debra Hanson,&nbsp;Jan Phillipus Lourens Labuschagne,&nbsp;Oliver Laeyendecker,&nbsp;Stéphane Le Vu,&nbsp;Brian Tom,&nbsp;Rui Wang,&nbsp;Alex Welte","doi":"10.1515/scid-2016-0002.","DOIUrl":null,"url":null,"abstract":"<p><p>The application of biomarkers for 'recent' infection in cross-sectional HIV incidence surveillance requires the estimation of critical biomarker characteristics. Various approaches have been employed for using longitudinal data to estimate the Mean Duration of Recent Infection (MDRI) - the average time in the 'recent' state. In this systematic benchmarking of MDRI estimation approaches, a simulation platform was used to measure accuracy and precision of over twenty approaches, in thirty scenarios capturing various study designs, subject behaviors and test dynamics that may be encountered in practice. Results highlight that assuming a single continuous sojourn in the 'recent' state can produce substantial bias. Simple interpolation provides useful MDRI estimates provided subjects are tested at regular intervals. Regression performs the best - while 'random effects' describe the subject-clustering in the data, regression models without random effects proved easy to implement, stable, and of similar accuracy in scenarios considered; robustness to parametric assumptions was improved by regressing 'recent'/'non-recent' classifications rather than continuous biomarker readings. All approaches were vulnerable to incorrect assumptions about subjects' (unobserved) infection times. Results provided show the relationships between MDRI estimation performance and the number of subjects, inter-visit intervals, missed visits, loss to follow-up, and aspects of biomarker signal and noise.</p>","PeriodicalId":74867,"journal":{"name":"Statistical communications in infectious diseases","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842819/pdf/nihms899045.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical communications in infectious diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/scid-2016-0002.","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of biomarkers for 'recent' infection in cross-sectional HIV incidence surveillance requires the estimation of critical biomarker characteristics. Various approaches have been employed for using longitudinal data to estimate the Mean Duration of Recent Infection (MDRI) - the average time in the 'recent' state. In this systematic benchmarking of MDRI estimation approaches, a simulation platform was used to measure accuracy and precision of over twenty approaches, in thirty scenarios capturing various study designs, subject behaviors and test dynamics that may be encountered in practice. Results highlight that assuming a single continuous sojourn in the 'recent' state can produce substantial bias. Simple interpolation provides useful MDRI estimates provided subjects are tested at regular intervals. Regression performs the best - while 'random effects' describe the subject-clustering in the data, regression models without random effects proved easy to implement, stable, and of similar accuracy in scenarios considered; robustness to parametric assumptions was improved by regressing 'recent'/'non-recent' classifications rather than continuous biomarker readings. All approaches were vulnerable to incorrect assumptions about subjects' (unobserved) infection times. Results provided show the relationships between MDRI estimation performance and the number of subjects, inter-visit intervals, missed visits, loss to follow-up, and aspects of biomarker signal and noise.

Abstract Image

Abstract Image

Abstract Image

横断面艾滋病毒发病率监测:估计“最近感染的平均持续时间”的基准方法。
“近期”感染的生物标志物在横断面HIV发病率监测中的应用需要对关键生物标志物特征进行估计。已经采用了各种方法来使用纵向数据来估计最近感染的平均持续时间(MDRI) -处于“最近”状态的平均时间。在对MDRI估计方法的系统基准测试中,我们使用了一个仿真平台来测量20多种方法在30个场景下的准确性和精度,这些场景捕捉了实践中可能遇到的各种研究设计、受试者行为和测试动态。结果强调,假设在“最近”状态下连续逗留一次会产生很大的偏差。简单的插值提供了有用的MDRI估计,前提是受试者定期接受测试。回归表现最好——当“随机效应”描述数据中的主题聚类时,没有随机效应的回归模型被证明易于实现,稳定,并且在考虑的场景中具有相似的准确性;通过回归“最近”/“非最近”分类而不是连续的生物标志物读数,提高了对参数假设的稳健性。所有方法都容易受到关于受试者(未观察到的)感染时间的错误假设的影响。提供的结果显示了MDRI估计性能与受试者数量、访问间隔、错过访问、随访损失以及生物标志物信号和噪声方面的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信