Enhancing thermodynamic stability of single-crystal Ni-rich cathode material via a synergistic dual-substitution strategy

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED
Jixue Shen , Hui Li , Haoyu Qi , Zhan Lin , Zeheng Li , Chuanbo Zheng , Weitong Du , Hao Chen , Shanqing Zhang
{"title":"Enhancing thermodynamic stability of single-crystal Ni-rich cathode material via a synergistic dual-substitution strategy","authors":"Jixue Shen ,&nbsp;Hui Li ,&nbsp;Haoyu Qi ,&nbsp;Zhan Lin ,&nbsp;Zeheng Li ,&nbsp;Chuanbo Zheng ,&nbsp;Weitong Du ,&nbsp;Hao Chen ,&nbsp;Shanqing Zhang","doi":"10.1016/j.jechem.2023.09.038","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel (Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity. However, the poor thermodynamic stability (including cyclic performance and safety performance or thermal stability) will restrain their wide commercial application. Herein, a single-crystal Ni-rich LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05</sub>O<sub>2</sub> cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces, while the low-valence doping element eliminates high Li<sup>+</sup>/Ni<sup>2+</sup> mixing. As a result, this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks, thereby ultimately improving the thermodynamic stability of Ni-rich cathode material. Notably, the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81% after 250 cycles (vs. Li/Li<sup>+</sup>) in coin-type half cells and 87% after 1000 cycles (vs. graphite/Li<sup>+</sup>) in pouch-type full cells at a high temperature of 55 °C. More impressively, the dual-doped sample exhibits excellent thermal stability, which demonstrates a higher thermal runaway temperature and a lower calorific value. The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures, which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 428-436"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005545","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel (Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity. However, the poor thermodynamic stability (including cyclic performance and safety performance or thermal stability) will restrain their wide commercial application. Herein, a single-crystal Ni-rich LiNi0.83Co0.12Mn0.05O2 cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces, while the low-valence doping element eliminates high Li+/Ni2+ mixing. As a result, this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks, thereby ultimately improving the thermodynamic stability of Ni-rich cathode material. Notably, the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81% after 250 cycles (vs. Li/Li+) in coin-type half cells and 87% after 1000 cycles (vs. graphite/Li+) in pouch-type full cells at a high temperature of 55 °C. More impressively, the dual-doped sample exhibits excellent thermal stability, which demonstrates a higher thermal runaway temperature and a lower calorific value. The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures, which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.

通过协同双取代策略提高单晶富镍正极材料的热力学稳定性
富镍(Ni)正极材料因其高比容量而成为下一代电动汽车的理想材料。然而,较差的热力学稳定性(包括循环性能和安全性能或热稳定性)将限制其广泛的商业应用。本文采用双取代策略合成了一种富ni单晶LiNi0.83Co0.12Mn0.05O2正极材料,其中高价掺杂元素通过形成强金属氧结合力提高结构稳定性,而低价掺杂元素消除了高Li+/Ni2+混合。因此,这种协同双取代可以有效抑制H2-H3相变和微裂纹的产生,从而最终提高富镍正极材料的热力学稳定性。值得注意的是,在55℃的高温下,双掺杂富镍阴极在硬币型半电池中250次循环后的容量保持率为81%(与Li/Li+相比),在袋型全电池中1000次循环后的容量保持率为87%(与石墨/Li+相比)。更令人印象深刻的是,双掺杂样品表现出优异的热稳定性,表现出较高的热失控温度和较低的热值。这种双替代策略的协同效应为解决高温富镍阴极的关键挑战开辟了新的途径,将显著推进高能量密度、高安全阴极的后续商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信