The investigation of the complex population-drug-drug interaction between ritonavir-boosted lopinavir and chloroquine or ivermectin using physiologically-based pharmacokinetic modeling.
{"title":"The investigation of the complex population-drug-drug interaction between ritonavir-boosted lopinavir and chloroquine or ivermectin using physiologically-based pharmacokinetic modeling.","authors":"Mo'tasem M Alsmadi","doi":"10.1515/dmpt-2022-0130","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Therapy failure caused by complex population-drug-drug (PDDI) interactions including CYP3A4 can be predicted using mechanistic physiologically-based pharmacokinetic (PBPK) modeling. A synergy between ritonavir-boosted lopinavir (LPVr), ivermectin, and chloroquine was suggested to improve COVID-19 treatment. This work aimed to study the PDDI of the two CYP3A4 substrates (ivermectin and chloroquine) with LPVr in mild-to-moderate COVID-19 adults, geriatrics, and pregnancy populations.</p><p><strong>Methods: </strong>The PDDI of LPVr with ivermectin or chloroquine was investigated. Pearson's correlations between plasma, saliva, and lung interstitial fluid (ISF) levels were evaluated. Target site (lung epithelial lining fluid [ELF]) levels of ivermectin and chloroquine were estimated.</p><p><strong>Results: </strong>Upon LPVr coadministration, while the chloroquine plasma levels were reduced by 30, 40, and 20%, the ivermectin plasma levels were increased by a minimum of 425, 234, and 453% in adults, geriatrics, and pregnancy populations, respectively. The established correlation equations can be useful in therapeutic drug monitoring (TDM) and dosing regimen optimization.</p><p><strong>Conclusions: </strong>Neither chloroquine nor ivermectin reached therapeutic ELF levels in the presence of LPVr despite reaching toxic ivermectin plasma levels. PBPK modeling, guided with TDM in saliva, can be advantageous to evaluate the probability of reaching therapeutic ELF levels in the presence of PDDI, especially in home-treated patients.</p>","PeriodicalId":11332,"journal":{"name":"Drug metabolism and personalized therapy","volume":"38 1","pages":"87-105"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism and personalized therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dmpt-2022-0130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 2
Abstract
Objectives: Therapy failure caused by complex population-drug-drug (PDDI) interactions including CYP3A4 can be predicted using mechanistic physiologically-based pharmacokinetic (PBPK) modeling. A synergy between ritonavir-boosted lopinavir (LPVr), ivermectin, and chloroquine was suggested to improve COVID-19 treatment. This work aimed to study the PDDI of the two CYP3A4 substrates (ivermectin and chloroquine) with LPVr in mild-to-moderate COVID-19 adults, geriatrics, and pregnancy populations.
Methods: The PDDI of LPVr with ivermectin or chloroquine was investigated. Pearson's correlations between plasma, saliva, and lung interstitial fluid (ISF) levels were evaluated. Target site (lung epithelial lining fluid [ELF]) levels of ivermectin and chloroquine were estimated.
Results: Upon LPVr coadministration, while the chloroquine plasma levels were reduced by 30, 40, and 20%, the ivermectin plasma levels were increased by a minimum of 425, 234, and 453% in adults, geriatrics, and pregnancy populations, respectively. The established correlation equations can be useful in therapeutic drug monitoring (TDM) and dosing regimen optimization.
Conclusions: Neither chloroquine nor ivermectin reached therapeutic ELF levels in the presence of LPVr despite reaching toxic ivermectin plasma levels. PBPK modeling, guided with TDM in saliva, can be advantageous to evaluate the probability of reaching therapeutic ELF levels in the presence of PDDI, especially in home-treated patients.
期刊介绍:
Drug Metabolism and Personalized Therapy (DMPT) is a peer-reviewed journal, and is abstracted/indexed in relevant major Abstracting Services. It provides up-to-date research articles, reviews and opinion papers in the wide field of drug metabolism research, covering established, new and potential drugs, environmentally toxic chemicals, the mechanisms by which drugs may interact with each other and with biological systems, and the pharmacological and toxicological consequences of these interactions and drug metabolism and excretion. Topics: drug metabolizing enzymes, pharmacogenetics and pharmacogenomics, biochemical pharmacology, molecular pathology, clinical pharmacology, pharmacokinetics and drug-drug interactions, immunopharmacology, neuropsychopharmacology.