How a disordered linker in the Polycomb protein Polyhomeotic tunes phase separation and oligomerization.

Tim M Gemeinhardt, Roshan M Regy, Tien M Phan, Nanu Pal, Jyoti Sharma, Olga Senkovich, Andrea J Mendiola, Heather J Ledterman, Amy Henrickson, Daniel Lopes, Utkarsh Kapoor, Ashish Bihani, Djamouna Sihou, Young C Kim, David Jeruzalmi, Borries Demeler, Chongwoo A Kim, Jeetain Mittal, Nicole J Francis
{"title":"How a disordered linker in the Polycomb protein Polyhomeotic tunes phase separation and oligomerization.","authors":"Tim M Gemeinhardt, Roshan M Regy, Tien M Phan, Nanu Pal, Jyoti Sharma, Olga Senkovich, Andrea J Mendiola, Heather J Ledterman, Amy Henrickson, Daniel Lopes, Utkarsh Kapoor, Ashish Bihani, Djamouna Sihou, Young C Kim, David Jeruzalmi, Borries Demeler, Chongwoo A Kim, Jeetain Mittal, Nicole J Francis","doi":"10.1101/2023.10.26.564264","DOIUrl":null,"url":null,"abstract":"<p><p>Biomolecular condensates are increasingly appreciated for their function in organizing and regulating biochemical processes in cells, including chromatin function. Condensate formation and properties are encoded in protein sequence but the mechanisms linking sequence to macroscale properties are incompletely understood. Cross species comparisons can reveal mechanisms either because they identify conserved functions or because they point to important differences. Here we use <i>in vitro</i> reconstitution and molecular dynamics simulations to compare <i>Drosophila</i> and human sequences that regulate condensate formation driven by the sterile alpha motif (SAM) oligomerization domain in the Polyhomeotic (Ph) subunit of the chromatin regulatory complex PRC1. We discover evolutionarily diverged contacts between the conserved SAM and the disordered linker that connects it to the rest of Ph. Linker-SAM interactions increase oligomerization and regulate formation and properties of reconstituted condensates. Oligomerization affects condensate dynamics but, in most cases, has little effect on their formation. Linker-SAM interactions also affect condensate formation in <i>Drosophila</i> and human cells, and growth in <i>Drosophila</i> imaginal discs. Our data show how evolutionary sequence changes in linkers connecting conserved structured domains can alter condensate properties.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.10.26.564264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomolecular condensates are increasingly appreciated for their function in organizing and regulating biochemical processes in cells, including chromatin function. Condensate formation and properties are encoded in protein sequence but the mechanisms linking sequence to macroscale properties are incompletely understood. Cross species comparisons can reveal mechanisms either because they identify conserved functions or because they point to important differences. Here we use in vitro reconstitution and molecular dynamics simulations to compare Drosophila and human sequences that regulate condensate formation driven by the sterile alpha motif (SAM) oligomerization domain in the Polyhomeotic (Ph) subunit of the chromatin regulatory complex PRC1. We discover evolutionarily diverged contacts between the conserved SAM and the disordered linker that connects it to the rest of Ph. Linker-SAM interactions increase oligomerization and regulate formation and properties of reconstituted condensates. Oligomerization affects condensate dynamics but, in most cases, has little effect on their formation. Linker-SAM interactions also affect condensate formation in Drosophila and human cells, and growth in Drosophila imaginal discs. Our data show how evolutionary sequence changes in linkers connecting conserved structured domains can alter condensate properties.

多梳蛋白多同质性中的无序连接体如何调节相分离和寡聚化。
Polycomb Group (PcG)复合物PRC1抑制转录,在细胞中形成凝聚物,并修饰染色质结构。这些过程是通过PRC1亚基Polyhomeotic (Ph)中存在的基本聚合无菌α基序(SAM)连接起来的。在体外,Ph SAM在Ph截断(“mini-Ph”)的情况下驱动短低聚物的形成和与DNA或染色质的相分离。低聚体的长度由连接SAM和Ph其余部分的长无序连接子(L)控制——用进化上分化的人类PHC3L取代果蝇PhL强烈增加了低聚化。连接剂如何控制SAM聚合,以及聚合和连接剂如何影响冷凝物的形成,目前还不清楚。我们用生化分析和分子动力学(MD)模拟分析了PhL和PHC3L。PHC3L促进mini-Ph相分离,使其相对独立于DNA。在MD模拟中,PHC3L中的碱性氨基酸与SAM中的酸性氨基酸形成接触。设计SAM使其与PhL产生类似的电荷基接触,增加了聚合和相分离,部分再现了PHC3L的效果。Ph到PHC3连接体的交换和SAM表面突变改变了细胞中Ph凝聚物的形成,以及Ph在果蝇想象盘中的功能。因此,sam驱动的相分离和聚合在果蝇和哺乳动物之间是保守的,但潜在的机制已经通过无序连接体的变化而发生了分歧。重点:在进化过程中,连接SAM和其他多同源体的无序连接子发生了分化,phc3l促进了相分离并改变了其潜在机制,phc3l有望通过电荷互补相互作用与SAM接触,PhL和SAM之间的工程电荷互补促进了寡聚化和相分离,连接子相互作用改变了细胞内的Ph凝聚物和果蝇想象盘的Ph功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信