A simple Monte Carlo method for estimating power in multilevel designs.

IF 7.8 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Psychological methods Pub Date : 2025-10-01 Epub Date: 2023-11-13 DOI:10.1037/met0000614
Craig K Enders, Brian T Keller, Michael P Woller
{"title":"A simple Monte Carlo method for estimating power in multilevel designs.","authors":"Craig K Enders, Brian T Keller, Michael P Woller","doi":"10.1037/met0000614","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating power for multilevel models is complex because there are many moving parts, several sources of variation to consider, and unique sample sizes at Level 1 and Level 2. Monte Carlo computer simulation is a flexible tool that has received considerable attention in the literature. However, much of the work to date has focused on very simple models with one predictor at each level and one cross-level interaction effect, and approaches that do not share this limitation require users to specify a large set of population parameters. The goal of this tutorial is to describe a flexible Monte Carlo approach that accommodates a broad class of multilevel regression models with continuous outcomes. Our tutorial makes three important contributions. First, it allows any number of within-cluster effects, between-cluster effects, covariate effects at either level, cross-level interactions, and random coefficients. Moreover, we do not assume orthogonal effects, and predictors can correlate at either level. Second, our approach accommodates models with multiple interaction effects, and it does so with exact expressions for the variances and covariances of product random variables. Finally, our strategy for deriving hypothetical population parameters does not require pilot or comparable data. Instead, we use intuitive variance-explained effect size expressions to reverse-engineer solutions for the regression coefficients and variance components. We describe a new R package mlmpower that computes these solutions and automates the process of generating artificial data sets and summarizing the simulation results. The online supplemental materials provide detailed vignettes that annotate the R scripts and resulting output. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"980-996"},"PeriodicalIF":7.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000614","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating power for multilevel models is complex because there are many moving parts, several sources of variation to consider, and unique sample sizes at Level 1 and Level 2. Monte Carlo computer simulation is a flexible tool that has received considerable attention in the literature. However, much of the work to date has focused on very simple models with one predictor at each level and one cross-level interaction effect, and approaches that do not share this limitation require users to specify a large set of population parameters. The goal of this tutorial is to describe a flexible Monte Carlo approach that accommodates a broad class of multilevel regression models with continuous outcomes. Our tutorial makes three important contributions. First, it allows any number of within-cluster effects, between-cluster effects, covariate effects at either level, cross-level interactions, and random coefficients. Moreover, we do not assume orthogonal effects, and predictors can correlate at either level. Second, our approach accommodates models with multiple interaction effects, and it does so with exact expressions for the variances and covariances of product random variables. Finally, our strategy for deriving hypothetical population parameters does not require pilot or comparable data. Instead, we use intuitive variance-explained effect size expressions to reverse-engineer solutions for the regression coefficients and variance components. We describe a new R package mlmpower that computes these solutions and automates the process of generating artificial data sets and summarizing the simulation results. The online supplemental materials provide detailed vignettes that annotate the R scripts and resulting output. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

一个简单的蒙特卡罗方法估计功率在多电平设计。
多层模型的功率估计是复杂的,因为有许多活动部件,需要考虑几个变化源,并且在第一级和第二级有独特的样本量。蒙特卡罗计算机模拟是一种灵活的工具,在文献中受到了相当大的关注。然而,迄今为止的大部分工作都集中在非常简单的模型上,每个级别有一个预测器和一个跨级别交互效应,而没有这种限制的方法要求用户指定一组大的总体参数。本教程的目标是描述一种灵活的蒙特卡罗方法,该方法可容纳具有连续结果的广泛类别的多层回归模型。我们的教程有三个重要贡献。首先,它允许任意数量的集群内效应、集群间效应、任意水平上的协变量效应、跨水平的相互作用和随机系数。此外,我们没有假设正交效应,预测因子可以在任何一个水平上相关。其次,我们的方法适用于具有多种相互作用效应的模型,并且它具有产品随机变量的方差和协方差的精确表达式。最后,我们推导假设总体参数的策略不需要试点或可比数据。相反,我们使用直观的方差解释效应大小表达式来对回归系数和方差成分进行逆向工程解决方案。我们描述了一个新的R包mlmpower,它可以计算这些解,并自动生成人工数据集和总结仿真结果。在线补充材料提供了详细的注释R脚本和结果输出的小插图。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信