The gene RAD51AP1 promotes the progression of pancreatic cancer via the PI3K/Akt/NF-κB signaling pathway.

IF 2 4区 医学 Q3 ONCOLOGY
Neoplasma Pub Date : 2023-12-01 Epub Date: 2023-11-15 DOI:10.4149/neo_2023_230614N310
Yongkun Wang, Yingchun Li, Cui Ran, Wenjun Le, Jiaxing Dong, Xujing Wang, Bo Chen, Xiaohua Jiang
{"title":"The gene RAD51AP1 promotes the progression of pancreatic cancer via the PI3K/Akt/NF-κB signaling pathway.","authors":"Yongkun Wang, Yingchun Li, Cui Ran, Wenjun Le, Jiaxing Dong, Xujing Wang, Bo Chen, Xiaohua Jiang","doi":"10.4149/neo_2023_230614N310","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer is one of the most lethal tumors due to its rapid proliferation and aggressiveness. RAD51AP1 is a protein-coding gene with critical functions in many cancers but few studies have assessed RAD51AP1 in pancreatic cancer. Bioinformatics methods and cell function experiments were performed to reveal the functions of RAD51AP1 in vitro. Gene Expression Profiling Interactive Analysis (GEPIA) was used to explore key proteins and their relationships with RAD51AP1 in the PI3K/AKT/NF-κB signaling pathways. Western blotting (WB) was conducted to detect the expression of key proteins after the downregulation of RAD51AP1. Co-Immunoprecipitation (Co-IP) was applied to confirm the binding of RAD51AP1 and PI3K. In addition, the lentivirus was used to construct subcutaneous tumors in nude mice to verify the function of RAD51AP1 in vivo. The Kaplan-Meier curves illustrated that elevated expression levels of RAD51AP1 were significantly correlated with reduced overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in pancreatic cancer patients. The results of WB showed that several key proteins in the PI3K/AKT/NF-κB signaling pathway (including PI3K, AKT, IKK1, IKK2, P65, P50, C-FLIP, and XIAP) exhibited a significant knockdown upon reducing the expression of RAD51AP1. Co-IP suggested that RAD51AP1 could directly bind to PI3K. In vitro, CCK-8, wound healing, and Transwell assays revealed that high RAD51AP1 expression was significantly correlated with increased cell proliferation, migration, and invasion. In vivo, mouse tumor formation experiments showed that RAD51AP1 inhibition significantly inhibited tumor growth. RAD51AP1 plays an important role in fostering cellular proliferation, invasion, metastasis, and tumor enlargement via the PI3K/AKT/NF-κB signaling pathway.</p>","PeriodicalId":19266,"journal":{"name":"Neoplasma","volume":" ","pages":"722-732"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/neo_2023_230614N310","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic cancer is one of the most lethal tumors due to its rapid proliferation and aggressiveness. RAD51AP1 is a protein-coding gene with critical functions in many cancers but few studies have assessed RAD51AP1 in pancreatic cancer. Bioinformatics methods and cell function experiments were performed to reveal the functions of RAD51AP1 in vitro. Gene Expression Profiling Interactive Analysis (GEPIA) was used to explore key proteins and their relationships with RAD51AP1 in the PI3K/AKT/NF-κB signaling pathways. Western blotting (WB) was conducted to detect the expression of key proteins after the downregulation of RAD51AP1. Co-Immunoprecipitation (Co-IP) was applied to confirm the binding of RAD51AP1 and PI3K. In addition, the lentivirus was used to construct subcutaneous tumors in nude mice to verify the function of RAD51AP1 in vivo. The Kaplan-Meier curves illustrated that elevated expression levels of RAD51AP1 were significantly correlated with reduced overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in pancreatic cancer patients. The results of WB showed that several key proteins in the PI3K/AKT/NF-κB signaling pathway (including PI3K, AKT, IKK1, IKK2, P65, P50, C-FLIP, and XIAP) exhibited a significant knockdown upon reducing the expression of RAD51AP1. Co-IP suggested that RAD51AP1 could directly bind to PI3K. In vitro, CCK-8, wound healing, and Transwell assays revealed that high RAD51AP1 expression was significantly correlated with increased cell proliferation, migration, and invasion. In vivo, mouse tumor formation experiments showed that RAD51AP1 inhibition significantly inhibited tumor growth. RAD51AP1 plays an important role in fostering cellular proliferation, invasion, metastasis, and tumor enlargement via the PI3K/AKT/NF-κB signaling pathway.

RAD51AP1基因通过PI3K/Akt/NF-κB信号通路促进胰腺癌的进展。
胰腺癌因其快速增殖和侵袭性而成为最致命的肿瘤之一。RAD51AP1是一种蛋白编码基因,在许多癌症中具有关键功能,但很少有研究评估RAD51AP1在胰腺癌中的作用。通过生物信息学方法和细胞功能实验揭示RAD51AP1在体外的功能。采用基因表达谱交互分析(GEPIA)研究PI3K/AKT/NF-κB信号通路中关键蛋白及其与RAD51AP1的关系。Western blotting (WB)检测RAD51AP1下调后关键蛋白的表达情况。采用免疫共沉淀法(Co-IP)证实RAD51AP1与PI3K结合。此外,我们还利用慢病毒构建裸鼠皮下肿瘤,验证RAD51AP1在体内的功能。Kaplan-Meier曲线显示,胰腺癌患者RAD51AP1表达水平升高与总生存期(OS)、疾病特异性生存期(DSS)和无进展间期(PFI)降低显著相关。WB结果显示,PI3K/AKT/NF-κB信号通路中的几个关键蛋白(包括PI3K、AKT、IKK1、IKK2、P65、P50、C-FLIP和XIAP)通过降低RAD51AP1的表达而显著下调。Co-IP提示RAD51AP1可以直接结合PI3K。体外CCK-8、伤口愈合和Transwell实验显示,RAD51AP1高表达与细胞增殖、迁移和侵袭增加显著相关。小鼠体内肿瘤形成实验表明,抑制RAD51AP1可显著抑制肿瘤生长。RAD51AP1通过PI3K/AKT/NF-κB信号通路在促进细胞增殖、侵袭、转移和肿瘤扩大中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neoplasma
Neoplasma 医学-肿瘤学
CiteScore
5.40
自引率
0.00%
发文量
238
审稿时长
3 months
期刊介绍: The journal Neoplasma publishes articles on experimental and clinical oncology and cancer epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信