Multidimensional Alignment Using the Euclidean Distance Transform

Dorota Kozinska , Oleh J. Tretiak , Jonathan Nissanov , Cengizhan Ozturk
{"title":"Multidimensional Alignment Using the Euclidean Distance Transform","authors":"Dorota Kozinska , Oleh J. Tretiak , Jonathan Nissanov , Cengizhan Ozturk","doi":"10.1006/gmip.1997.0447","DOIUrl":null,"url":null,"abstract":"Abstract We present a methodology for alignment of multidimensional data sets that is based on the Euclidean distance transform and the Marquardt–Levenberg optimization algorithm. The proposed approach operates on pixel or voxel descriptions of objects to be matched and estimates the parameters of a space transformation for optimal alignment of objects. The computational cost of an algorithm developed with this method is estimated. The methodology is tested by developing an algorithm for rigid body transformation alignment of three-dimensional data sets. Tests with synthetic and real objects indicate that the method is accurate, reliable, and robust.","PeriodicalId":100591,"journal":{"name":"Graphical Models and Image Processing","volume":"59 6","pages":"Pages 373-387"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/gmip.1997.0447","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077316997904470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

Abstract We present a methodology for alignment of multidimensional data sets that is based on the Euclidean distance transform and the Marquardt–Levenberg optimization algorithm. The proposed approach operates on pixel or voxel descriptions of objects to be matched and estimates the parameters of a space transformation for optimal alignment of objects. The computational cost of an algorithm developed with this method is estimated. The methodology is tested by developing an algorithm for rigid body transformation alignment of three-dimensional data sets. Tests with synthetic and real objects indicate that the method is accurate, reliable, and robust.
利用欧几里得距离变换的多维对齐
我们提出了一种基于欧几里得距离变换和Marquardt-Levenberg优化算法的多维数据集对齐方法。该方法对待匹配对象的像素或体素描述进行操作,并估计空间变换参数以实现对象的最佳对齐。估计了用这种方法开发的算法的计算量。通过开发一种三维数据集的刚体变换对齐算法对该方法进行了测试。实验结果表明,该方法准确、可靠、鲁棒性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信