Audit data analytics, machine learning, and full population testing

Q1 Mathematics
Feiqi Huang , Won Gyun No , Miklos A. Vasarhelyi , Zhaokai Yan
{"title":"Audit data analytics, machine learning, and full population testing","authors":"Feiqi Huang ,&nbsp;Won Gyun No ,&nbsp;Miklos A. Vasarhelyi ,&nbsp;Zhaokai Yan","doi":"10.1016/j.jfds.2022.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Emerging technologies like data analytics and machine learning are impacting the accounting profession. In particular, significant changes are anticipated in audit and assurance procedures because of those impacts. One such potential change is audit sampling. As audit sampling only provides a small snapshot of the entire population, it starts to lose some of its meaning in this big data era. One feasible solution is the usage of audit data analytics and machine learning to enable an analysis of the entire population rather than a sample of the transactions. This paper presents an approach for applying audit data analytics and machine learning to full population testing and discusses related challenges.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"8 ","pages":"Pages 138-144"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S240591882200006X/pdfft?md5=4b953cb6a7425c87262a7317dc1fef45&pid=1-s2.0-S240591882200006X-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240591882200006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

Emerging technologies like data analytics and machine learning are impacting the accounting profession. In particular, significant changes are anticipated in audit and assurance procedures because of those impacts. One such potential change is audit sampling. As audit sampling only provides a small snapshot of the entire population, it starts to lose some of its meaning in this big data era. One feasible solution is the usage of audit data analytics and machine learning to enable an analysis of the entire population rather than a sample of the transactions. This paper presents an approach for applying audit data analytics and machine learning to full population testing and discusses related challenges.

审计数据分析,机器学习和全人口测试
数据分析和机器学习等新兴技术正在影响会计行业。特别是,由于这些影响,预计审计和保证程序将发生重大变化。其中一个潜在的变化是审计抽样。由于审计抽样只能提供整个人口的一小部分快照,因此在这个大数据时代,它开始失去一些意义。一个可行的解决方案是使用审计数据分析和机器学习来分析整个群体,而不是交易的样本。本文提出了一种将审计数据分析和机器学习应用于全人口测试的方法,并讨论了相关的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信