Amer Imran , Borhan Beigzadeh , Mohammad Reza Haghjoo
{"title":"A new passive transfemoral prosthesis mechanism based on 3R36 knee and ESAR foot providing walking and squatting","authors":"Amer Imran , Borhan Beigzadeh , Mohammad Reza Haghjoo","doi":"10.1016/j.taml.2023.100476","DOIUrl":null,"url":null,"abstract":"<div><p>Researchers have proposed various linkage mechanisms to connect knee and ankle joints for above-knee prostheses, but most of them only offer natural walking. However, studies have shown that people assume a squatting posture during daily activities. This paper introduces a novel mechanism that connects the knee joint with the foot-ankle joint to enable both squatting and walking. The prosthetic knee used is the well-known 3R36, while the Energy Storing and Return (ESAR) prosthetic foot is used for the ankle-foot joint. To coordinate knee and ankle joint movements, a six-bar linkage mechanism structure is proposed. Simulation results demonstrate that the proposed modular transfemoral prosthesis accurately mimics the motion patterns of a natural human leg during walking and squatting. For instance, the prosthesis allows a total knee flexion of more than 140° during squatting. The new prosthesis design also incorporates energy-storing mechanisms to reduce energy expenditure during walking for amputees.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095034923000478/pdfft?md5=560291a267a655201edfa6c9a585c331&pid=1-s2.0-S2095034923000478-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034923000478","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers have proposed various linkage mechanisms to connect knee and ankle joints for above-knee prostheses, but most of them only offer natural walking. However, studies have shown that people assume a squatting posture during daily activities. This paper introduces a novel mechanism that connects the knee joint with the foot-ankle joint to enable both squatting and walking. The prosthetic knee used is the well-known 3R36, while the Energy Storing and Return (ESAR) prosthetic foot is used for the ankle-foot joint. To coordinate knee and ankle joint movements, a six-bar linkage mechanism structure is proposed. Simulation results demonstrate that the proposed modular transfemoral prosthesis accurately mimics the motion patterns of a natural human leg during walking and squatting. For instance, the prosthesis allows a total knee flexion of more than 140° during squatting. The new prosthesis design also incorporates energy-storing mechanisms to reduce energy expenditure during walking for amputees.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).