I C L J Filz von Reiterdank, I L Defize, E M de Groot, T Wedel, P P Grimminger, J H Egberts, H Stein, J P Ruurda, R van Hillegersberg, R L A W Bleys
{"title":"The surgical anatomy of a (robot-assisted) minimally invasive transcervical esophagectomy.","authors":"I C L J Filz von Reiterdank, I L Defize, E M de Groot, T Wedel, P P Grimminger, J H Egberts, H Stein, J P Ruurda, R van Hillegersberg, R L A W Bleys","doi":"10.1093/dote/doac072","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transcervical esophagectomy allows for esophagectomy through transcervical access and bypasses the thoracic cavity, thereby eliminating single lung ventilation. A challenging surgical approach demands thorough understanding of the encountered anatomy. This study aims to provide a comprehensive overview of surgical anatomy encountered during the (robot-assisted) minimally invasive transcervical esophagectomy (RACE and MICE).</p><p><strong>Methods: </strong>To assess the surgical anatomy of the lower neck and mediastinum, MR images were made of a body donor after, which it was sliced at 24-μm intervals with a cryomacrotome. Images were made every 3 slices resulting in 3.200 images of which a digital 3D multiplanar reconstruction was made. For macroscopic verification, microscopic slices were made and stained every 5 mm (Mallory-Cason). Schematic drawings were made of the 3D reconstruction to demonstrate the course of essential anatomical structures in the operation field and identify anatomical landmarks.</p><p><strong>Results: </strong>Surgical anatomy 'boxes' of three levels (superior thoracic aperture, upper mediastinum, subcarinal) were created. Four landmarks were identified: (i) the course of the thoracic duct in the mediastinum; (ii) the course of the left recurrent laryngeal nerve; (iii) the crossing of the azygos vein right and dorsal of the esophagus; and (iv) the position of the aortic arch, the pulmonary arteries, and veins.</p><p><strong>Conclusions: </strong>The presented 3D reconstruction of unmanipulated human anatomy and schematic 3D 'boxes' provide a comprehensive overview of the surgical anatomy during the RACE or MICE. Our findings provide a useful tool to aid surgeons in learning the complex anatomy of the mediastinum and the exploration of new surgical approaches such as the RACE or MICE.</p>","PeriodicalId":11255,"journal":{"name":"Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus","volume":"36 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases of the esophagus : official journal of the International Society for Diseases of the Esophagus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/dote/doac072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Transcervical esophagectomy allows for esophagectomy through transcervical access and bypasses the thoracic cavity, thereby eliminating single lung ventilation. A challenging surgical approach demands thorough understanding of the encountered anatomy. This study aims to provide a comprehensive overview of surgical anatomy encountered during the (robot-assisted) minimally invasive transcervical esophagectomy (RACE and MICE).
Methods: To assess the surgical anatomy of the lower neck and mediastinum, MR images were made of a body donor after, which it was sliced at 24-μm intervals with a cryomacrotome. Images were made every 3 slices resulting in 3.200 images of which a digital 3D multiplanar reconstruction was made. For macroscopic verification, microscopic slices were made and stained every 5 mm (Mallory-Cason). Schematic drawings were made of the 3D reconstruction to demonstrate the course of essential anatomical structures in the operation field and identify anatomical landmarks.
Results: Surgical anatomy 'boxes' of three levels (superior thoracic aperture, upper mediastinum, subcarinal) were created. Four landmarks were identified: (i) the course of the thoracic duct in the mediastinum; (ii) the course of the left recurrent laryngeal nerve; (iii) the crossing of the azygos vein right and dorsal of the esophagus; and (iv) the position of the aortic arch, the pulmonary arteries, and veins.
Conclusions: The presented 3D reconstruction of unmanipulated human anatomy and schematic 3D 'boxes' provide a comprehensive overview of the surgical anatomy during the RACE or MICE. Our findings provide a useful tool to aid surgeons in learning the complex anatomy of the mediastinum and the exploration of new surgical approaches such as the RACE or MICE.