Héctor G.-de-Alba , Samuel Nucamendi-Guillén , Oliver Avalos-Rosales
{"title":"A mixed integer formulation and an efficient metaheuristic for the unrelated parallel machine scheduling problem: Total tardiness minimization","authors":"Héctor G.-de-Alba , Samuel Nucamendi-Guillén , Oliver Avalos-Rosales","doi":"10.1016/j.ejco.2022.100034","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the unrelated parallel machine scheduling problem with the objective of minimizing the total tardiness is addressed. For such a problem, a mixed-integer linear programming (MILP) formulation, that considers assignment and positional variables, is presented. In addition, an iterated local search (ILS) algorithm that produces high-quality solutions in reasonable times is proposed for large size instances. The ILS robustness was determined by comparing its performance with the results provided by the MILP. The instances used in this paper were constructed under a new approach which results in tighter due dates than the previous generation method for this problem. The proposed MILP formulation was able to solve instances of up to 150 jobs and 20 machines. Regarding the ILS, it yielded high-quality solutions in a reasonable time, solving instances of a size up to 400 jobs and 20 machines. Experimental results confirm that both approaches are efficient and promising.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100034"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440622000107/pdfft?md5=fe6b0c8e039b76ee7c40763ee43095a1&pid=1-s2.0-S2192440622000107-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440622000107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, the unrelated parallel machine scheduling problem with the objective of minimizing the total tardiness is addressed. For such a problem, a mixed-integer linear programming (MILP) formulation, that considers assignment and positional variables, is presented. In addition, an iterated local search (ILS) algorithm that produces high-quality solutions in reasonable times is proposed for large size instances. The ILS robustness was determined by comparing its performance with the results provided by the MILP. The instances used in this paper were constructed under a new approach which results in tighter due dates than the previous generation method for this problem. The proposed MILP formulation was able to solve instances of up to 150 jobs and 20 machines. Regarding the ILS, it yielded high-quality solutions in a reasonable time, solving instances of a size up to 400 jobs and 20 machines. Experimental results confirm that both approaches are efficient and promising.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.