Spectral Profile Partial Least-Squares (SP-PLS): Local multivariate pansharpening on spectral profiles

Tuomas Sihvonen, Zina-Sabrina Duma, Heikki Haario, Satu-Pia Reinikainen
{"title":"Spectral Profile Partial Least-Squares (SP-PLS): Local multivariate pansharpening on spectral profiles","authors":"Tuomas Sihvonen,&nbsp;Zina-Sabrina Duma,&nbsp;Heikki Haario,&nbsp;Satu-Pia Reinikainen","doi":"10.1016/j.ophoto.2023.100049","DOIUrl":null,"url":null,"abstract":"<div><p>The compatibility of multispectral (MS) pansharpening algorithms with hyperspectral (HS) data is limited. With the recent development in HS satellites, there is a need for methods that can provide high spatial and spectral fidelity in both HS and MS scenarios.</p><p>The present article presents a fast pansharpening method, based on the division of similar hyperspectral data in spectral subgroups using k-means clustering and Spectral Angle Mapper (SAM) profiling. Local Partial Least-Square (PLS) models are calibrated for each spectral subgroup against the respective pixels of the panchromatic image. The models are inverted to retrieve high-resolution pansharpened images. The method is tested against different methods that are able to handle both MS and HS pansharpening and assessed using reduced- and full-resolution evaluation methodologies. Based on a statistical multivariate approach, the proposed method is able to render uncertainty maps for spectral or spatial fidelity - functionality not reported in any other pansharpening study.</p></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"10 ","pages":"Article 100049"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667393223000200/pdfft?md5=8601d34da365ecdb3113dcf7bf967e02&pid=1-s2.0-S2667393223000200-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393223000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The compatibility of multispectral (MS) pansharpening algorithms with hyperspectral (HS) data is limited. With the recent development in HS satellites, there is a need for methods that can provide high spatial and spectral fidelity in both HS and MS scenarios.

The present article presents a fast pansharpening method, based on the division of similar hyperspectral data in spectral subgroups using k-means clustering and Spectral Angle Mapper (SAM) profiling. Local Partial Least-Square (PLS) models are calibrated for each spectral subgroup against the respective pixels of the panchromatic image. The models are inverted to retrieve high-resolution pansharpened images. The method is tested against different methods that are able to handle both MS and HS pansharpening and assessed using reduced- and full-resolution evaluation methodologies. Based on a statistical multivariate approach, the proposed method is able to render uncertainty maps for spectral or spatial fidelity - functionality not reported in any other pansharpening study.

光谱轮廓偏最小二乘(SP-PLS):光谱轮廓的局部多元泛锐化
多光谱(MS)泛锐化算法与高光谱(HS)数据的兼容性受到限制。随着高分辨率卫星的发展,需要在高分辨率和高分辨率场景下提供高空间保真度和频谱保真度的方法。本文提出了一种基于k均值聚类和光谱角映射器(SAM)剖面对相似高光谱数据在光谱子组中的划分的快速泛锐化方法。局部偏最小二乘(PLS)模型针对全色图像的各自像素校准每个光谱子组。将模型倒置以检索高分辨率泛锐化图像。该方法针对能够处理MS和HS泛锐化的不同方法进行了测试,并使用降低和全分辨率评估方法进行了评估。基于统计多元方法,所提出的方法能够呈现光谱或空间保真度功能的不确定性图,这在任何其他泛锐化研究中都没有报道过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信