FairPRS: adjusting for admixed populations in polygenic risk scores using invariant risk minimization.

Q2 Computer Science
Diego Machado Reyes, Aritra Bose, Ehud Karavani, Laxmi Parida
{"title":"FairPRS: adjusting for admixed populations in polygenic risk scores using invariant risk minimization.","authors":"Diego Machado Reyes, Aritra Bose, Ehud Karavani, Laxmi Parida","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Polygenic risk scores (PRS) are increasingly used to estimate the personal risk of a trait based on genetics. However, most genomic cohorts are of European populations, with a strong under-representation of non-European groups. Given that PRS poorly transport across racial groups, this has the potential to exacerbate health disparities if used in clinical care. Hence there is a need to generate PRS that perform comparably across ethnic groups. Borrowing from recent advancements in the domain adaption field of machine learning, we propose FairPRS - an Invariant Risk Minimization (IRM) approach for estimating fair PRS or debiasing a pre-computed PRS. We test our method on both a diverse set of synthetic data and real data from the UK Biobank. We show our method can create ancestry-invariant PRS distributions that are both racially unbiased and largely improve phenotype prediction. We hope that FairPRS will contribute to a fairer characterization of patients by genetics rather than by race.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"28 ","pages":"198-208"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Polygenic risk scores (PRS) are increasingly used to estimate the personal risk of a trait based on genetics. However, most genomic cohorts are of European populations, with a strong under-representation of non-European groups. Given that PRS poorly transport across racial groups, this has the potential to exacerbate health disparities if used in clinical care. Hence there is a need to generate PRS that perform comparably across ethnic groups. Borrowing from recent advancements in the domain adaption field of machine learning, we propose FairPRS - an Invariant Risk Minimization (IRM) approach for estimating fair PRS or debiasing a pre-computed PRS. We test our method on both a diverse set of synthetic data and real data from the UK Biobank. We show our method can create ancestry-invariant PRS distributions that are both racially unbiased and largely improve phenotype prediction. We hope that FairPRS will contribute to a fairer characterization of patients by genetics rather than by race.

FairPRS:使用不变量风险最小化方法调整多基因风险评分中的混杂人群。
多基因风险评分(PRS)越来越多地用于根据遗传学估算某种性状的个人风险。然而,大多数基因组队列都是欧洲人群,非欧洲人群的代表性严重不足。鉴于 PRS 在不同种族群体之间的迁移性较差,如果用于临床护理,有可能会加剧健康差异。因此,有必要生成跨种族群体具有可比性的 PRS。借鉴机器学习领域适应性方面的最新进展,我们提出了公平PRS--一种用于估计公平PRS或去除预先计算的PRS的不变风险最小化(IRM)方法。我们在一组不同的合成数据和英国生物库的真实数据上测试了我们的方法。结果表明,我们的方法可以创建种族无偏的祖先不变 PRS 分布,并在很大程度上改善表型预测。我们希望 FairPRS 将有助于根据遗传学而非种族对患者进行更公平的特征描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信