Trading the FX volatility risk premium with machine learning and alternative data

Q1 Mathematics
Thomas Dierckx , Jesse Davis , Wim Schoutens
{"title":"Trading the FX volatility risk premium with machine learning and alternative data","authors":"Thomas Dierckx ,&nbsp;Jesse Davis ,&nbsp;Wim Schoutens","doi":"10.1016/j.jfds.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we show how both machine learning and alternative data can be successfully leveraged to improve and develop trading strategies. Starting from a trading strategy that harvests the EUR/USD volatility risk premium by selling one-week straddles every weekday, we present a machine learning approach to more skillfully time new trades and thus prevent unfavorable ones. To this end, we build probability-calibrated Random Forests on various predictors, extracted from both traditional market data and financial news, to predict the closing Sharpe ratio of short one-week delta-hedged straddles. We then demonstrate how the output of these calibrated machine learning models can be used to engineer intuitive new trading strategies. Ultimately, we show that our proposed strategies outperform the original strategy on risk-based performance measures. Moreover, the features that we derived from financial news articles significantly improve the performance of the approach.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"8 ","pages":"Pages 162-179"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918822000083/pdfft?md5=b58dced6034ed9a3c7acc83ec4f3a4fd&pid=1-s2.0-S2405918822000083-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918822000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we show how both machine learning and alternative data can be successfully leveraged to improve and develop trading strategies. Starting from a trading strategy that harvests the EUR/USD volatility risk premium by selling one-week straddles every weekday, we present a machine learning approach to more skillfully time new trades and thus prevent unfavorable ones. To this end, we build probability-calibrated Random Forests on various predictors, extracted from both traditional market data and financial news, to predict the closing Sharpe ratio of short one-week delta-hedged straddles. We then demonstrate how the output of these calibrated machine learning models can be used to engineer intuitive new trading strategies. Ultimately, we show that our proposed strategies outperform the original strategy on risk-based performance measures. Moreover, the features that we derived from financial news articles significantly improve the performance of the approach.

使用机器学习和替代数据交易外汇波动风险溢价
在本研究中,我们展示了如何成功地利用机器学习和替代数据来改进和开发交易策略。从一个交易策略开始,通过每个工作日出售一周跨期交易来收获欧元/美元波动风险溢价,我们提出了一种机器学习方法,可以更熟练地选择新交易的时间,从而防止不利的交易。为此,我们在从传统市场数据和财经新闻中提取的各种预测指标上建立了概率校准的随机森林,以预测短期一周三角洲对冲的跨式交易的收盘夏普比率。然后,我们演示了如何使用这些校准的机器学习模型的输出来设计直观的新交易策略。最后,我们表明我们提出的策略在基于风险的绩效指标上优于原始策略。此外,我们从财经新闻文章中获得的特征显著提高了方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信