Adaptive symmetric flux limiters with long computation times for hyperbolic conservation laws

IF 1.4 Q2 MATHEMATICS, APPLIED
Shujiang Tang
{"title":"Adaptive symmetric flux limiters with long computation times for hyperbolic conservation laws","authors":"Shujiang Tang","doi":"10.1016/j.rinam.2023.100410","DOIUrl":null,"url":null,"abstract":"<div><p>The construction of the limiter is a critical factor in the traditional Total Variation Diminishing (TVD) scheme. Among the classical limiters, superbee has the lowest numerical dissipation, but it can lead to over-compression in smooth regions and excessive artificial steepening at discontinuities and critical points if the computation time is prolonged. Classical limiters like Minmod, van Leer, van Albada, and MC fail to distinguish between different wave types, and they can even cause numerical oscillations for multi-critical value problems with prolonged computation times. A class of adaptive limiters has been created by combining classical limiters with superbee. This adaptive limiter can achieve second-order accuracy in smoothed regions and effectively reduce over-compression and excessive artificial steepening for long computation times. Analytical and numerical results show that the MUSCL scheme with an adaptive limiter is efficient.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"20 ","pages":"Article 100410"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037423000560/pdfft?md5=7424e48e748a40dd778d7c38afdd7fd1&pid=1-s2.0-S2590037423000560-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037423000560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of the limiter is a critical factor in the traditional Total Variation Diminishing (TVD) scheme. Among the classical limiters, superbee has the lowest numerical dissipation, but it can lead to over-compression in smooth regions and excessive artificial steepening at discontinuities and critical points if the computation time is prolonged. Classical limiters like Minmod, van Leer, van Albada, and MC fail to distinguish between different wave types, and they can even cause numerical oscillations for multi-critical value problems with prolonged computation times. A class of adaptive limiters has been created by combining classical limiters with superbee. This adaptive limiter can achieve second-order accuracy in smoothed regions and effectively reduce over-compression and excessive artificial steepening for long computation times. Analytical and numerical results show that the MUSCL scheme with an adaptive limiter is efficient.

双曲守恒律计算时间长的自适应对称通量限制器
在传统的全变差递减(TVD)方案中,限制器的构造是一个关键因素。在经典的限制器中,超级蜜蜂的数值耗散最小,但如果计算时间延长,它会导致光滑区域的过度压缩和不连续点和临界点的过度人工变陡。Minmod, van Leer, van Albada和MC等经典限制器无法区分不同的波类型,它们甚至会导致计算时间延长的多临界值问题的数值振荡。将经典限制器与超级蜜蜂相结合,创造了一类自适应限制器。该自适应限幅器可以在平滑区域达到二阶精度,有效地减少了计算时间过长的过度压缩和过度的人工陡坡。分析和数值结果表明,带自适应限制器的MUSCL方案是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信