Rarita-Schwinger fields on nearly Kähler manifolds

IF 0.6 4区 数学 Q3 MATHEMATICS
Soma Ohno , Takuma Tomihisa
{"title":"Rarita-Schwinger fields on nearly Kähler manifolds","authors":"Soma Ohno ,&nbsp;Takuma Tomihisa","doi":"10.1016/j.difgeo.2023.102068","DOIUrl":null,"url":null,"abstract":"<div><p>We study Rarita-Schwinger fields on 6-dimensional compact strict nearly Kähler manifolds. In order to investigate them, we clarify the relationship between some differential operators for the Hermitian connection and the Levi-Civita connection. As a result, we show that the space of Rarita-Schwinger fields coincides with the space of harmonic 3-forms. Applying the same technique to deformation theory, we also find that the space of infinitesimal deformations of Killing spinors coincides with the direct sum of a certain eigenspace of the Laplace operator and the space of Killing spinors.</p></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"91 ","pages":"Article 102068"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926224523000943/pdfft?md5=630b11c08c25cdf884db86fa0e59240a&pid=1-s2.0-S0926224523000943-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224523000943","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study Rarita-Schwinger fields on 6-dimensional compact strict nearly Kähler manifolds. In order to investigate them, we clarify the relationship between some differential operators for the Hermitian connection and the Levi-Civita connection. As a result, we show that the space of Rarita-Schwinger fields coincides with the space of harmonic 3-forms. Applying the same technique to deformation theory, we also find that the space of infinitesimal deformations of Killing spinors coincides with the direct sum of a certain eigenspace of the Laplace operator and the space of Killing spinors.

近乎Kähler流形上的rita- schwinger场
研究了6维紧致严格近似Kähler流形上的rita- schwinger场。为了研究它们,我们澄清了厄密连接和列维-奇维塔连接的一些微分算子之间的关系。结果表明,rita- schwinger场的空间与谐波3型空间重合。将同样的方法应用到变形理论中,我们也发现了消旋量的无穷小变形空间与拉普拉斯算子的某个特征空间与消旋量空间的直接和重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信