{"title":"State of the art in visible-light photocatalysis of aqueous pollutants using metal-organic frameworks","authors":"Pedro H.M. Andrade , Hugo Palhares , Christophe Volkringer , Thierry Loiseau , Matthieu Hureau , Eduardo Nunes , Alain Moissette","doi":"10.1016/j.jphotochemrev.2023.100635","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This review focuses on the many research that have been undertaken in visible-light driven environmental photocatalysis<span> field employing Metal-Organic Framework (MOF) materials for the removal of aqueous pollutants. Correlations between their structural and functional features, and the reactional pathways for pollutant degradation were also addressed, with a particular emphasis on the syntheses and on the charge transfer complexes occurring in the MOF compounds. The extensive possibilities for modifying the properties of MOFs in diverse applications were critical while dealing with a variety of contaminants with different properties. Indeed, because of the infinite number of combinations of different inorganic poly-oxo clusters and organic linkers, and to the possibility of tailoring other variables such as functional groups, pore size, defects, and incorporation of other materials (dyes, semiconductors, </span></span>metal nanoparticles, covalent organic frameworks, carbon-based materials, magnetic compounds, and inert carriers), MOFs have a high potential to lead the </span>photocatalytic field. Furthermore, the use of mixed methods has shown to be a legitimate and fascinating technique for further developing these systems while considering their strengths and weaknesses. Despite considerable advancements in MOF-based photocatalysts, significant obstacles remain. However, the research of heterogeneous photocatalysis dates back to the 1970 s, but the discussion of MOF materials is even more recent, with just a few decades spent investigating these systems. Nonetheless, tremendous breakthroughs in this area have been made, from structural design to computer simulations, and reports of various MOF materials have constantly increased in the previous several years. As a result, combining the collaborative efforts of researchers from many domains, the future appears to hold promising prospects for MOF-based photocatalysts.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"57 ","pages":"Article 100635"},"PeriodicalIF":12.8000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556723000667","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This review focuses on the many research that have been undertaken in visible-light driven environmental photocatalysis field employing Metal-Organic Framework (MOF) materials for the removal of aqueous pollutants. Correlations between their structural and functional features, and the reactional pathways for pollutant degradation were also addressed, with a particular emphasis on the syntheses and on the charge transfer complexes occurring in the MOF compounds. The extensive possibilities for modifying the properties of MOFs in diverse applications were critical while dealing with a variety of contaminants with different properties. Indeed, because of the infinite number of combinations of different inorganic poly-oxo clusters and organic linkers, and to the possibility of tailoring other variables such as functional groups, pore size, defects, and incorporation of other materials (dyes, semiconductors, metal nanoparticles, covalent organic frameworks, carbon-based materials, magnetic compounds, and inert carriers), MOFs have a high potential to lead the photocatalytic field. Furthermore, the use of mixed methods has shown to be a legitimate and fascinating technique for further developing these systems while considering their strengths and weaknesses. Despite considerable advancements in MOF-based photocatalysts, significant obstacles remain. However, the research of heterogeneous photocatalysis dates back to the 1970 s, but the discussion of MOF materials is even more recent, with just a few decades spent investigating these systems. Nonetheless, tremendous breakthroughs in this area have been made, from structural design to computer simulations, and reports of various MOF materials have constantly increased in the previous several years. As a result, combining the collaborative efforts of researchers from many domains, the future appears to hold promising prospects for MOF-based photocatalysts.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.