ASIP tandem queues with consumption

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yaron Yeger , Onno Boxma , Jacques Resing , Maria Vlasiou
{"title":"ASIP tandem queues with consumption","authors":"Yaron Yeger ,&nbsp;Onno Boxma ,&nbsp;Jacques Resing ,&nbsp;Maria Vlasiou","doi":"10.1016/j.peva.2023.102380","DOIUrl":null,"url":null,"abstract":"<div><p>The Asymmetric Inclusion Process (ASIP) tandem queue is a model of stations in series with a gate after each station. At a gate opening, all customers in that station instantaneously move to the next station unidirectionally. In our study, we enhance the ASIP model by introducing the capability for individual customers to independently move from one station to the next, and by allowing both individual customers and batches of customers from any station to exit the system. The model is inspired by the process by which macromolecules are transported within cells.</p><p>We present a comprehensive analysis of various aspects of the queue length in the ASIP tandem model. Specifically, we provide an exact analysis of queue length moments and correlations and, under certain circumstances, of the queue length distribution. Furthermore, we propose an approximation for the joint queue length distribution. This approximation is derived using three different approaches, one of which employs the concept of the replica mean-field limit. Among other results, our analysis offers insight into the extent to which nutrients can support the survival of a cell.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"163 ","pages":"Article 102380"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166531623000500/pdfft?md5=979d6daae1fd3cf701761a51f472a8ff&pid=1-s2.0-S0166531623000500-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531623000500","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The Asymmetric Inclusion Process (ASIP) tandem queue is a model of stations in series with a gate after each station. At a gate opening, all customers in that station instantaneously move to the next station unidirectionally. In our study, we enhance the ASIP model by introducing the capability for individual customers to independently move from one station to the next, and by allowing both individual customers and batches of customers from any station to exit the system. The model is inspired by the process by which macromolecules are transported within cells.

We present a comprehensive analysis of various aspects of the queue length in the ASIP tandem model. Specifically, we provide an exact analysis of queue length moments and correlations and, under certain circumstances, of the queue length distribution. Furthermore, we propose an approximation for the joint queue length distribution. This approximation is derived using three different approaches, one of which employs the concept of the replica mean-field limit. Among other results, our analysis offers insight into the extent to which nutrients can support the survival of a cell.

带消费的ASIP串联队列
非对称包含过程(ASIP)串列队列是站的串联模型,每个站后面都有一个门。门打开时,该站的所有顾客立即单向地移动到下一站。在我们的研究中,我们通过引入单个客户独立地从一个站点移动到下一个站点的能力,以及允许来自任何站点的单个客户和批量客户退出系统来增强ASIP模型。该模型的灵感来自于大分子在细胞内运输的过程。我们提出了在ASIP串联模型的队列长度的各个方面的全面分析。具体来说,我们提供了对队列长度矩和相关性的精确分析,以及在某些情况下对队列长度分布的精确分析。此外,我们提出了一个近似的联合队列长度分布。这个近似是用三种不同的方法推导出来的,其中一种方法采用了复制平均场极限的概念。在其他结果中,我们的分析提供了对营养物质在多大程度上支持细胞存活的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Performance Evaluation
Performance Evaluation 工程技术-计算机:理论方法
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
24 days
期刊介绍: Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions: -Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques -Provide new insights into the performance of computing and communication systems -Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools. More specifically, common application areas of interest include the performance of: -Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management) -System architecture, design and implementation -Cognitive radio -VANETs -Social networks and media -Energy efficient ICT -Energy harvesting -Data centers -Data centric networks -System reliability -System tuning and capacity planning -Wireless and sensor networks -Autonomic and self-organizing systems -Embedded systems -Network science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信