{"title":"Silver nanoparticles induced apoptosis in papillary and follicular thyroid carcinoma cells","authors":"Saeed M. Fayadh , Asma H. Mohammed","doi":"10.1016/j.phmed.2022.100056","DOIUrl":null,"url":null,"abstract":"<div><p>Uniform and Monodisperse AgNPs were synthesized via a simple chemical reduction approach the synthesized AgNPs' characterizations were as follows: UV–Vis analysis displayed Surface plasmon resonance (SPR) of AgNPs peaked around 425 nm. AgNPs were shown to have a crystalline structure with a face-centered cubic (FCC) lattice using X-ray diffraction (XRD) investigation. Transmission electron microscopy (TEM) images illustrated a spherical in shape and well dispersant AgNPs, having a 12 nm average size. The AgNPs' stability was confirmed by dynamic light scattering (DLS) data with the coincidence of hydrodynamic diameter to the nominal particle size obtained from TEM. Interestingly, the synthesized AgNPs demonstrated a dose-dependent reduction of thyroid carcinoma growth, the Papillary (MDA-T22) and the Follicular (FTC-133) cells with determined IC50 values of 71.35 and 52.79 μg/ml, respectively. Meanwhile, against normal cells (WRL-68) the AgNPs had no cytotoxic effect at low concentrations and minimal cytotoxicity at higher of 200–400 μg/ml with a significantly increased IC50 value reached to 218.4 μg ml<sup>−1</sup>. The induced apoptosis of AgNPs treated cancer cells was determined by a High-content screening (HCS) assay. Moreover, the apoptotic morphological changes were explored and the mechanism of affected living cells to apoptosis showed an increase in cell membrane permeability, cytochrome <em>c</em> level, and nuclear intensity in dose-dependent with a significant deferent at higher concentrations (100 and 200 μg mL<sup>−1</sup>) (p < 0.0001). Conversely, a noticeable decrease in cell viable count and mitochondrial membrane permeability was observed with AgNPs treatment compared with control. Our findings indicate the potential suitability of these nanoparticles for biological and clinical applications.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"14 ","pages":"Article 100056"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352451022000105/pdfft?md5=ff0eab9a2cea72e77ee9443a7375106b&pid=1-s2.0-S2352451022000105-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352451022000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
Uniform and Monodisperse AgNPs were synthesized via a simple chemical reduction approach the synthesized AgNPs' characterizations were as follows: UV–Vis analysis displayed Surface plasmon resonance (SPR) of AgNPs peaked around 425 nm. AgNPs were shown to have a crystalline structure with a face-centered cubic (FCC) lattice using X-ray diffraction (XRD) investigation. Transmission electron microscopy (TEM) images illustrated a spherical in shape and well dispersant AgNPs, having a 12 nm average size. The AgNPs' stability was confirmed by dynamic light scattering (DLS) data with the coincidence of hydrodynamic diameter to the nominal particle size obtained from TEM. Interestingly, the synthesized AgNPs demonstrated a dose-dependent reduction of thyroid carcinoma growth, the Papillary (MDA-T22) and the Follicular (FTC-133) cells with determined IC50 values of 71.35 and 52.79 μg/ml, respectively. Meanwhile, against normal cells (WRL-68) the AgNPs had no cytotoxic effect at low concentrations and minimal cytotoxicity at higher of 200–400 μg/ml with a significantly increased IC50 value reached to 218.4 μg ml−1. The induced apoptosis of AgNPs treated cancer cells was determined by a High-content screening (HCS) assay. Moreover, the apoptotic morphological changes were explored and the mechanism of affected living cells to apoptosis showed an increase in cell membrane permeability, cytochrome c level, and nuclear intensity in dose-dependent with a significant deferent at higher concentrations (100 and 200 μg mL−1) (p < 0.0001). Conversely, a noticeable decrease in cell viable count and mitochondrial membrane permeability was observed with AgNPs treatment compared with control. Our findings indicate the potential suitability of these nanoparticles for biological and clinical applications.
期刊介绍:
The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.