{"title":"Development and application of in silico models to design new antibacterial 5-amino-4-cyano-1,3-oxazoles against colistin-resistant E. coli strains","authors":"Ivan Semenyuta, Diana Hodyna, Vasyl Kovalishyn, Bohdan Demydchuk, Maryna Kachaeva, Stepan Pilyo, Volodymyr Brovarets, Larysa Metelytsia","doi":"10.1016/j.aichem.2023.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Here we describe the results of QSAR analysis based on artificial neural networks, synthesis, activity evaluation and molecular docking of a number of 1,3-oxazole derivatives as anti-E. coli antibacterials. All developed QSAR models showed excellent statistics on training (with determination coefficient q<sup>2</sup> as 0.76 ± 0.01) and test samples (with q<sup>2</sup> as 0.78 ± 0.01). The models were successfully used to identify nine novel 5-amino-4-cyano-1,3-oxazoles with potential anti-E. coli activity. All nine 1,3-oxazoles with predicted high antibacterial potential showed different levels of anti- E. coli in vitro activity. 5-amino-4-cyano-1,3-oxazoles <strong>1</strong> and <strong>3</strong> showed the highest antibacterial activity on average from 17 to 27 mm against MDR, hemolytic MDR and ATCC 25922 <em>E. coli</em> colistin-resistant strains, respectively. The comparative docking analysis demonstrated a possible mechanism of the antibacterial action of the studied 1, 3-oxazoles <strong>1</strong> and <strong>3</strong> through inhibition of <em>E. coli</em> enoyl-ACP reductase (ENR) involved in the biosynthesis of bacterial fatty acids. The localization type is shown of 5-amino-4-cyano-1,3-oxazoles <strong>1</strong> and <strong>3</strong> into the <em>E. coli</em> ENR active site with estimated binding energy from − 10.1 to − 9.5 kcal/mol and hydrogen bonds formation with key amino acids similar to Triclosan. These facts confirm the validity of the hypothesis put forward about the potential antibacterial mechanism of 5-amino-4- cyano-1,3-oxazoles.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"1 2","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949747723000246/pdfft?md5=c9085bc34142109bacab7efa22188c7f&pid=1-s2.0-S2949747723000246-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747723000246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Here we describe the results of QSAR analysis based on artificial neural networks, synthesis, activity evaluation and molecular docking of a number of 1,3-oxazole derivatives as anti-E. coli antibacterials. All developed QSAR models showed excellent statistics on training (with determination coefficient q2 as 0.76 ± 0.01) and test samples (with q2 as 0.78 ± 0.01). The models were successfully used to identify nine novel 5-amino-4-cyano-1,3-oxazoles with potential anti-E. coli activity. All nine 1,3-oxazoles with predicted high antibacterial potential showed different levels of anti- E. coli in vitro activity. 5-amino-4-cyano-1,3-oxazoles 1 and 3 showed the highest antibacterial activity on average from 17 to 27 mm against MDR, hemolytic MDR and ATCC 25922 E. coli colistin-resistant strains, respectively. The comparative docking analysis demonstrated a possible mechanism of the antibacterial action of the studied 1, 3-oxazoles 1 and 3 through inhibition of E. coli enoyl-ACP reductase (ENR) involved in the biosynthesis of bacterial fatty acids. The localization type is shown of 5-amino-4-cyano-1,3-oxazoles 1 and 3 into the E. coli ENR active site with estimated binding energy from − 10.1 to − 9.5 kcal/mol and hydrogen bonds formation with key amino acids similar to Triclosan. These facts confirm the validity of the hypothesis put forward about the potential antibacterial mechanism of 5-amino-4- cyano-1,3-oxazoles.