ClGanNet: A novel method for maize leaf disease identification using ClGan and deep CNN

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Vivek Sharma , Ashish Kumar Tripathi , Purva Daga , Nidhi M. , Himanshu Mittal
{"title":"ClGanNet: A novel method for maize leaf disease identification using ClGan and deep CNN","authors":"Vivek Sharma ,&nbsp;Ashish Kumar Tripathi ,&nbsp;Purva Daga ,&nbsp;Nidhi M. ,&nbsp;Himanshu Mittal","doi":"10.1016/j.image.2023.117074","DOIUrl":null,"url":null,"abstract":"<div><p>With the advancement of technologies, automatic plant leaf disease detection has received considerable attention from researchers working in the area of precision agriculture. A number of deep learning-based methods have been introduced in the literature for automated plant disease detection. However, the majority of datasets collected from real fields have blurred background information, data imbalances, less generalization, and tiny lesion features, which may lead to over-fitting of the model. Moreover, the increased parameter size of deep learning models is also a concern, especially for agricultural applications due to limited resources. In this paper, a novel ClGan (Crop Leaf Gan) with improved loss function has been developed with a reduced number of parameters as compared to the existing state-of-the-art methods. The generator and discriminator of the developed ClGan have been encompassed with an encoder–decoder network to avoid the vanishing gradient problem, training instability, and non-convergence failure while preserving complex intricacies during synthetic image generation with significant lesion differentiation. The proposed improved loss function introduces a dynamic correction factor that stabilizes learning while perpetuating effective weight optimization. In addition, a novel plant leaf classification method ClGanNet, has been introduced to classify plant diseases efficiently. The efficiency of the proposed ClGan was validated on the maize leaf dataset in terms of the number of parameters and FID score, and the results are compared against five other state-of-the-art GAN models namely, DC-GAN, W-GAN, <span><math><mrow><mi>W</mi><mi>G</mi><mi>a</mi><msub><mrow><mi>n</mi></mrow><mrow><mi>G</mi><mi>P</mi></mrow></msub></mrow></math></span>, InfoGan, and LeafGan. Moreover, the performance of the proposed classifier, ClGanNet, was evaluated with seven state-of-the-art methods against eight parameters on the original, basic augmented, and ClGan augmented datasets. Experimental results of ClGanNet have outperformed all the considered methods with 99.97% training and 99.04% testing accuracy while using the least number of parameters.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"120 ","pages":"Article 117074"},"PeriodicalIF":3.4000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092359652300156X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of technologies, automatic plant leaf disease detection has received considerable attention from researchers working in the area of precision agriculture. A number of deep learning-based methods have been introduced in the literature for automated plant disease detection. However, the majority of datasets collected from real fields have blurred background information, data imbalances, less generalization, and tiny lesion features, which may lead to over-fitting of the model. Moreover, the increased parameter size of deep learning models is also a concern, especially for agricultural applications due to limited resources. In this paper, a novel ClGan (Crop Leaf Gan) with improved loss function has been developed with a reduced number of parameters as compared to the existing state-of-the-art methods. The generator and discriminator of the developed ClGan have been encompassed with an encoder–decoder network to avoid the vanishing gradient problem, training instability, and non-convergence failure while preserving complex intricacies during synthetic image generation with significant lesion differentiation. The proposed improved loss function introduces a dynamic correction factor that stabilizes learning while perpetuating effective weight optimization. In addition, a novel plant leaf classification method ClGanNet, has been introduced to classify plant diseases efficiently. The efficiency of the proposed ClGan was validated on the maize leaf dataset in terms of the number of parameters and FID score, and the results are compared against five other state-of-the-art GAN models namely, DC-GAN, W-GAN, WGanGP, InfoGan, and LeafGan. Moreover, the performance of the proposed classifier, ClGanNet, was evaluated with seven state-of-the-art methods against eight parameters on the original, basic augmented, and ClGan augmented datasets. Experimental results of ClGanNet have outperformed all the considered methods with 99.97% training and 99.04% testing accuracy while using the least number of parameters.

ClGanNet:基于ClGan和深度CNN的玉米叶片病害识别新方法
随着技术的进步,植物叶片病害自动检测受到了精准农业研究人员的广泛关注。文献中介绍了许多基于深度学习的植物病害自动检测方法。然而,大多数从真实领域采集的数据集存在背景信息模糊、数据不平衡、泛化程度低、病灶特征微小等问题,可能导致模型的过拟合。此外,由于资源有限,深度学习模型的参数大小增加也是一个问题,特别是在农业应用中。在本文中,与现有的最先进的方法相比,开发了一种具有改进损失函数的新型ClGan(作物叶片Gan),其参数数量减少。开发的ClGan的生成器和鉴别器包含了一个编码器-解码器网络,以避免梯度消失问题、训练不稳定和非收敛失败,同时保留了合成图像生成过程中复杂的复杂性。所提出的改进损失函数引入了一个动态校正因子,在保持有效权优化的同时稳定学习。此外,还引入了一种新的植物叶片分类方法ClGanNet,对植物病害进行有效分类。根据参数数量和FID评分,在玉米叶片数据集上验证了所提出的ClGan的效率,并将结果与其他五种最先进的GAN模型(DC-GAN、W-GAN、WGanGP、InfoGan和LeafGan)进行了比较。此外,在原始数据集、基本增强数据集和ClGan增强数据集上,用7种最先进的方法对8个参数进行了性能评估。实验结果表明,ClGanNet在使用最少参数的情况下,以99.97%的训练精度和99.04%的测试精度优于所有考虑的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信