S-scheme heterojunction photocatalysts for CO2 conversion: Design, characterization and categories

Aiyun Meng , Bicheng Zhu , Yucun Zhong , Shuang Zhou , Peigang Han , Yaorong Su
{"title":"S-scheme heterojunction photocatalysts for CO2 conversion: Design, characterization and categories","authors":"Aiyun Meng ,&nbsp;Bicheng Zhu ,&nbsp;Yucun Zhong ,&nbsp;Shuang Zhou ,&nbsp;Peigang Han ,&nbsp;Yaorong Su","doi":"10.1016/j.enrev.2023.100052","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic CO<sub>2</sub> conversion into valuable hydrocarbon fuels via solar light is a promising strategy to simultaneously address energy shortage and environmental pollution. However, the photocatalytic CO<sub>2</sub> reduction performance is too poor to be practically utilized due to the rapid recombination of photogenerated charge carriers. Constructing step-scheme (S-scheme) heterojunction photocatalysts can facilitate the charge separation and maximize the redox ability, thus remarkably enhancing the photocatalytic CO<sub>2</sub> reduction activity. This review summarizes the progress of S-scheme heterojunction photocatalysts applied in the photocatalytic CO<sub>2</sub> reduction reactions. Firstly, we introduce the fundamental design principles and characterization methods. The direct and indirect techniques to confirm the S-scheme charge transfer mechanism are disclosed. Secondly, we divide S-scheme composite photocatalyst into the following categories depending on their compositions: g-C<sub>3</sub>N<sub>4</sub>-based, metal-chalcogenide-based, TiO<sub>2</sub>-based, bismuth-based, other metal oxide-based and other semiconductor-based S-scheme photocatalysts. The synergistic effect of the S-scheme charge transfer pathway as well as the unique intrinsic properties of semiconductor materials on the photocatalytic CO<sub>2</sub> reduction performance is discussed in detail. Finally, concluding perspectives on the challenges and opportunities for the further exploration of highly efficient S-scheme photocatalysts in photocatalytic CO<sub>2</sub> conversion are presented.</p></div>","PeriodicalId":100471,"journal":{"name":"Energy Reviews","volume":"2 4","pages":"Article 100052"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772970223000391/pdfft?md5=0c5a00d12beb5ef5de2b225ff50d7513&pid=1-s2.0-S2772970223000391-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Reviews","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772970223000391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic CO2 conversion into valuable hydrocarbon fuels via solar light is a promising strategy to simultaneously address energy shortage and environmental pollution. However, the photocatalytic CO2 reduction performance is too poor to be practically utilized due to the rapid recombination of photogenerated charge carriers. Constructing step-scheme (S-scheme) heterojunction photocatalysts can facilitate the charge separation and maximize the redox ability, thus remarkably enhancing the photocatalytic CO2 reduction activity. This review summarizes the progress of S-scheme heterojunction photocatalysts applied in the photocatalytic CO2 reduction reactions. Firstly, we introduce the fundamental design principles and characterization methods. The direct and indirect techniques to confirm the S-scheme charge transfer mechanism are disclosed. Secondly, we divide S-scheme composite photocatalyst into the following categories depending on their compositions: g-C3N4-based, metal-chalcogenide-based, TiO2-based, bismuth-based, other metal oxide-based and other semiconductor-based S-scheme photocatalysts. The synergistic effect of the S-scheme charge transfer pathway as well as the unique intrinsic properties of semiconductor materials on the photocatalytic CO2 reduction performance is discussed in detail. Finally, concluding perspectives on the challenges and opportunities for the further exploration of highly efficient S-scheme photocatalysts in photocatalytic CO2 conversion are presented.

Abstract Image

用于CO2转化的s型异质结光催化剂:设计、表征和分类
利用太阳能光催化二氧化碳转化为有价值的碳氢化合物燃料是解决能源短缺和环境污染的一种很有前途的策略。然而,由于光生成的载流子的快速重组,光催化CO2还原性能很差,无法实际利用。构建阶梯型(s型)异质结光催化剂可以促进电荷分离,最大限度地提高氧化还原能力,从而显著提高光催化CO2还原活性。综述了s型异质结光催化剂在光催化CO2还原反应中的应用进展。首先,我们介绍了基本的设计原理和表征方法。公开了确认S-scheme电荷转移机制的直接和间接技术。其次,我们将S-scheme复合光催化剂根据其组成分为以下几类:g- c3n4基、金属硫族化合物基、tio2基、铋基、其他金属氧化物基和其他半导体基S-scheme光催化剂。详细讨论了S-scheme电荷转移途径的协同效应以及半导体材料独特的本征性质对光催化CO2还原性能的影响。最后,对进一步探索高效s型光催化剂在光催化CO2转化中的挑战和机遇进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信